import gradio as gr import pandas as pd import numpy as np from prophet import Prophet from mysql import connector import json import random from prophet.serialize import model_from_json def get_data(): _conn = connector.connect( host='110.238.111.32', user = 'outsider', password='Hack2024', database = 'TheSimp' ) _cursor = _conn.cursor() _query = "SELECT name , province ,a_type ,genre ,close ,hour ,link FROM places" _cursor.execute(_query) _data = _cursor.fetchall() _cursor.close() _conn.close() _df = pd.DataFrame(_data,columns=['name','province','a_type','genre','close','hour','link']) return _df def get_dataset(): _conn = connector.connect( host='110.238.111.32', user = 'outsider', password='Hack2024', database = 'TheSimp' ) _cursor = _conn.cursor() _query = "SELECT id , ds ,a_temp ,m_temp ,n_temp ,y ,a_pres ,m_pres ,a_ws ,m_ws ,a_humi ,m_humi ,n_humi ,a_vis flat,m_vis ,n_vis FROM weather_new" _cursor.execute(_query) _data = _cursor.fetchall() _cursor.close() _conn.close() _df = pd.DataFrame(_data,columns=['id','ds','a_temp','m_temp','n_temp','y','a_pres','m_pres','a_ws','m_ws','a_humi','m_humi','n_humi' ,'a_vis','m_vis' ,'n_vis']).drop('id',axis=1) return _df province_mapping = { 'Bangkok': 'กรุงเทพฯ', 'Nakohn Pathom': 'นครปฐม', 'Pathum Thani': 'ปทุมธานี', 'Nakohn Nayok': 'นครนายก', 'Nonthaburi': 'นนทบุรี', 'Samut Songkhram': 'สมุทรสงคราม' } with open('prophet_model.json', 'r') as fin: prophet_model = model_from_json(json.load(fin)) def will_rain(year, month, date): _date = pd.to_datetime(f'{year}-{month}-{date}') _df = pd.DataFrame({'ds': [_date]}) _prediction = prophet_model.predict(_df) _prediction = float(_prediction['yhat']) return _prediction >= 0.5 def get_advice(province, activity, purpose, year, month, date): is_rain = will_rain(year, month, date) activity = 'indoor' if is_rain else activity.lower() province = province_mapping[province] places = get_data() places.replace({'indoor ': 'indoor', 'outdoor ': 'outdoor'}, inplace=True) places = places[(places['province'] == province) & (places['a_type'] == activity) & (places['genre'] == purpose.lower())] random_idx = np.random.randint(0, len(places)) place_name = places.iloc[random_idx]['name'] close_day = places.iloc[random_idx]['close'] open_hour = places.iloc[random_idx]['hour'] advice = f"It might rain on {year}-{month}-{date}, so we suggest you to go indoor place such as {place_name}." if is_rain else f"It might not rain on {year}-{month}-{date}, so we suggest you to go to place such as {place_name}." return advice, place_name, close_day, open_hour iface = gr.Interface( fn=get_advice, inputs=[ gr.Dropdown(["Bangkok", 'Nakohn Pathom', 'Pathum Thani', 'Nakohn Nayok', 'Nonthaburi', 'Samut Songkhram'], label="Province",), gr.Dropdown(["indoor", "outdoor"], label="Activity"), gr.Dropdown(["shopping", "relax", 'education', 'culture', 'nature'], label="Purpose"), gr.Dropdown([2024], label="Year"), gr.Dropdown([i for i in range(1, 13)], label="Month"), gr.Dropdown([i for i in range(1, 32)], label="Date"), ], outputs=[ gr.components.Textbox(label='Advice'), gr.components.Textbox(label="Place Name"), gr.components.Textbox(label="Close day"), gr.components.Textbox(label="Open hour"), ], live=True, title="Right place, Right day", description="Get the weather forecast for a place you would like to go.", theme="default" ) iface.launch()