Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,24 @@ def get_data():
|
|
23 |
_conn.close()
|
24 |
_df = pd.DataFrame(_data,columns=['name','province','a_type','genre','close','hour','link'])
|
25 |
return _df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
27 |
province_mapping = {
|
28 |
'Bangkok': 'กรุงเทพฯ',
|
29 |
'Nakohn Pathom': 'นครปฐม',
|
@@ -33,8 +50,17 @@ province_mapping = {
|
|
33 |
'Samut Songkhram': 'สมุทรสงคราม'
|
34 |
}
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def will_rain(year, month, date):
|
40 |
_date = pd.to_datetime(f'{year}-{month}-{date}')
|
@@ -46,12 +72,10 @@ def will_rain(year, month, date):
|
|
46 |
def get_advice(province, activity, purpose, year, month, date):
|
47 |
is_rain = will_rain(year, month, date)
|
48 |
activity = 'indoor' if is_rain else activity.lower()
|
49 |
-
|
50 |
province = province_mapping[province]
|
51 |
|
52 |
-
|
53 |
-
places.replace({'indoor ': 'indoor', 'outdoor ': 'outdoor'}, inplace=True)
|
54 |
-
places = places[(places['province'] == province) & (places['a_type'] == activity) & (places['genre'] == purpose.lower())]
|
55 |
|
56 |
random_idx = np.random.randint(0, len(places))
|
57 |
place_name = places.iloc[random_idx]['name']
|
|
|
23 |
_conn.close()
|
24 |
_df = pd.DataFrame(_data,columns=['name','province','a_type','genre','close','hour','link'])
|
25 |
return _df
|
26 |
+
def get_dataset():
|
27 |
+
_conn = connector.connect(
|
28 |
+
host='110.238.111.32',
|
29 |
+
user = 'outsider',
|
30 |
+
password='Hack2024',
|
31 |
+
database = 'TheSimp'
|
32 |
+
)
|
33 |
+
_cursor = _conn.cursor()
|
34 |
+
_query = "SELECT id , ds ,a_temp ,m_temp ,n_temp ,y ,a_pres ,m_pres ,a_ws ,m_ws ,a_humi ,m_humi ,n_humi ,a_vis flat,m_vis ,n_vis FROM weather_new"
|
35 |
+
_cursor.execute(_query)
|
36 |
+
_data = cursor.fetchall()
|
37 |
+
_df = pd.DataFrame(_data,columns=['id','ds','a_temp','m_temp','n_temp','y','a_pres','m_pres','a_ws','m_ws','a_humi','m_humi','n_humi' ,'a_vis','m_vis' ,'n_vis']).drop('id',axis=1)
|
38 |
+
return _df
|
39 |
+
|
40 |
|
41 |
+
places = get_data()
|
42 |
+
places.replace({'indoor ': 'indoor', 'outdoor ': 'outdoor'}, inplace=True)
|
43 |
+
places = places[(places['province'] == province) & (places['a_type'] == activity) & (places['genre'] == purpose.lower())]
|
44 |
province_mapping = {
|
45 |
'Bangkok': 'กรุงเทพฯ',
|
46 |
'Nakohn Pathom': 'นครปฐม',
|
|
|
50 |
'Samut Songkhram': 'สมุทรสงคราม'
|
51 |
}
|
52 |
|
53 |
+
|
54 |
+
#with open('prophet_model.json', 'r') as fin:
|
55 |
+
# prophet_model = model_from_json(json.load(fin))
|
56 |
+
|
57 |
+
params = {
|
58 |
+
'changepoint_prior_scale': 0.1,
|
59 |
+
'seasonality_prior_scale': 0.1,
|
60 |
+
'interval_width' : 0.2,
|
61 |
+
}
|
62 |
+
model = Prophet(**params)
|
63 |
+
model.fit(get_dataset())
|
64 |
|
65 |
def will_rain(year, month, date):
|
66 |
_date = pd.to_datetime(f'{year}-{month}-{date}')
|
|
|
72 |
def get_advice(province, activity, purpose, year, month, date):
|
73 |
is_rain = will_rain(year, month, date)
|
74 |
activity = 'indoor' if is_rain else activity.lower()
|
75 |
+
|
76 |
province = province_mapping[province]
|
77 |
|
78 |
+
|
|
|
|
|
79 |
|
80 |
random_idx = np.random.randint(0, len(places))
|
81 |
place_name = places.iloc[random_idx]['name']
|