from transformers import AutoProcessor, AutoModelForCausalLM import gradio as gr import torch processor = AutoProcessor.from_pretrained('microsoft/git-base') model = AutoModelForCausalLM.from_pretrained('./') def predict(image): try: inputs = processor(images=image, return_tensors="pt") device = "cuda" if torch.cuda.is_available() else "cpu" inputs = {key: value.to(device) for key, value in inputs.items()} model.to(device) outputs = model.generate(**inputs) caption = processor.batch_decode(outputs, skip_special_tokens=True)[0] return caption except Exception as e: print("Error during prediction:", str(e)) return "Error: " + str(e) with gr.Blocks() as demo: image = gr.Image(type="pil") predict_btn = gr.Button("Predict", variant="primary") output = gr.Textbox(label="Generated Caption") inputs = [image] outputs = [output] predict_btn.click(predict, inputs=inputs, outputs=outputs) if __name__ == "__main__": demo.launch()