import os import gradio as gr import cv2 from insightface.app import FaceAnalysis from hsemotion_onnx.facial_emotions import HSEmotionRecognizer def resize(image, target_size): # Get the dimensions of the input image height, width = image.shape[0], image.shape[1] # Calculate the scaling factor needed to resize the image to the target size scaling_factor = min(target_size[0] / width, target_size[1] / height) # Resize the image using cv2.resize resized_image = cv2.resize(image, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR) return resized_image def facial_emotion_recognition(img): img = resize(img, target_size) # faces = face_detector.get(img) # if len(faces) > 0: # highest_score_box = (0, 0, 0, 0) # x, y, w, h # highest_score = 0 # for face in faces: # if face['det_score'] > highest_score: # highest_score = face['det_score'] # x1, y1, x2, y2 = face['bbox'].astype(int) # x_margin = int((x2 - x1) * face_margin) # y_margin = int((y2 - y1) * face_margin) # x = max(0, x1 - x_margin) # y = max(0, y1 - y_margin) # w = min(x2 + x_margin, img.shape[1]) - x # h = min(y2 + y_margin, img.shape[0]) - y # highest_score_box = (x, y, w, h) # x, y, w, h = highest_score_box # emotion, _ = hse_emo_model.predict_emotions(img[y:y+h, x:x+w], logits=True) # cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2) # cv2.putText(img, emotion, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) return img face_margin = 0.1 target_size = (640, 640) model_name = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'buffalo_sc') face_detector = FaceAnalysis(name=model_name, allowed_modules=['detection'], providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) face_detector.prepare(ctx_id=0, det_size=(640, 640)) hse_emo_model = HSEmotionRecognizer(model_name='enet_b0_8_best_vgaf') webcam = gr.Image(image_mode='RGB', type='numpy', source='webcam', label='Input Image') webcam_output = gr.Image(image_mode='RGB', type='numpy', label='Output Image') webcam_interface = gr.Interface(facial_emotion_recognition, inputs=webcam, outputs=webcam_output) upload = gr.Image(image_mode='RGB', type='numpy', source='upload', label='Input Image') upload_output = gr.Image(image_mode='RGB', type='numpy', label='Output Image') upload_interface = gr.Interface(facial_emotion_recognition, inputs=upload, outputs=upload_output, examples='examples') demo = gr.TabbedInterface(interface_list=[upload_interface, webcam_interface], tab_names=['Upload', 'Webcam']) demo.launch()