import os import json from llamaapi import LlamaAPI from openai import OpenAI # Initialize llama = LlamaAPI("LL-AirERHEk0jLIE1yEPvMXeobNfLsqLWJWcxLRS53obrZ3XyqMTfZc4EAuOs7r3wso") api_key = "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" os.environ["OPENAI_API_KEY"] = api_key client = OpenAI() def classify_learning_content(user_input): messages = [ {"role": "system", "content": "Classify the need as either " "'Vocabulary Building', 'Writing instruction', " "'Speaking Practice', 'Writing Assessment'."}, {"role": "user", "content": user_input} ] completion = client.chat.completions.create( model="gpt-4", messages=messages ) classification_text = completion.choices[0].message.content.strip().lower() # Normalize the text # Simplify the comparison using keywords, assuming each category is distinct enough if "writing assessment" in classification_text: return 4 elif "vocabulary building" in classification_text: return 3 elif "writing instruction" in classification_text: return 2 elif "speaking practice" in classification_text: return 1 else: return 0 if __name__ == '__main__': print(classify_learning_content("Vocabulary"))