File size: 6,811 Bytes
0c84ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# -*- coding: utf-8 -*-
"""
Detect words on the page
return array of words' bounding boxes
"""
import numpy as np
import matplotlib.pyplot as plt
import cv2
from .helpers import *
def detection(image, join=False):
"""Detecting the words bounding boxes.
Return: numpy array of bounding boxes [x, y, x+w, y+h]
"""
# Preprocess image for word detection
blurred = cv2.GaussianBlur(image, (5, 5), 18)
edge_img = _edge_detect(blurred)
ret, edge_img = cv2.threshold(edge_img, 50, 255, cv2.THRESH_BINARY)
bw_img = cv2.morphologyEx(edge_img, cv2.MORPH_CLOSE,
np.ones((15,15), np.uint8))
return _text_detect(bw_img, image, join)
def sort_words(boxes):
"""Sort boxes - (x, y, x+w, y+h) from left to right, top to bottom."""
mean_height = sum([y2 - y1 for _, y1, _, y2 in boxes]) / len(boxes)
boxes.view('i8,i8,i8,i8').sort(order=['f1'], axis=0)
current_line = boxes[0][1]
lines = []
tmp_line = []
for box in boxes:
if box[1] > current_line + mean_height:
lines.append(tmp_line)
tmp_line = [box]
current_line = box[1]
continue
tmp_line.append(box)
lines.append(tmp_line)
for line in lines:
line.sort(key=lambda box: box[0])
return lines
def _edge_detect(im):
"""
Edge detection using sobel operator on each layer individually.
Sobel operator is applied for each image layer (RGB)
"""
return np.max(np.array([_sobel_detect(im[:,:, 0]),
_sobel_detect(im[:,:, 1]),
_sobel_detect(im[:,:, 2])]), axis=0)
def _sobel_detect(channel):
"""Sobel operator."""
sobelX = cv2.Sobel(channel, cv2.CV_16S, 1, 0)
sobelY = cv2.Sobel(channel, cv2.CV_16S, 0, 1)
sobel = np.hypot(sobelX, sobelY)
sobel[sobel > 255] = 255
return np.uint8(sobel)
def union(a,b):
x = min(a[0], b[0])
y = min(a[1], b[1])
w = max(a[0]+a[2], b[0]+b[2]) - x
h = max(a[1]+a[3], b[1]+b[3]) - y
return [x, y, w, h]
def _intersect(a,b):
x = max(a[0], b[0])
y = max(a[1], b[1])
w = min(a[0]+a[2], b[0]+b[2]) - x
h = min(a[1]+a[3], b[1]+b[3]) - y
if w<0 or h<0:
return False
return True
def _group_rectangles(rec):
"""
Uion intersecting rectangles.
Args:
rec - list of rectangles in form [x, y, w, h]
Return:
list of grouped ractangles
"""
tested = [False for i in range(len(rec))]
final = []
i = 0
while i < len(rec):
if not tested[i]:
j = i+1
while j < len(rec):
if not tested[j] and _intersect(rec[i], rec[j]):
rec[i] = union(rec[i], rec[j])
tested[j] = True
j = i
j += 1
final += [rec[i]]
i += 1
return final
def _text_detect(img, image, join=False):
"""Text detection using contours."""
small = resize(img, 2000)
# Finding contours
mask = np.zeros(small.shape, np.uint8)
cnt, hierarchy = cv2.findContours(np.copy(small),
cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_SIMPLE)
index = 0
boxes = []
# Go through all contours in top level
while (index >= 0):
x,y,w,h = cv2.boundingRect(cnt[index])
cv2.drawContours(mask, cnt, index, (255, 255, 255), cv2.FILLED)
maskROI = mask[y:y+h, x:x+w]
# Ratio of white pixels to area of bounding rectangle
r = cv2.countNonZero(maskROI) / (w * h)
# Limits for text
if (r > 0.1
and 1600 > w > 10
and 1600 > h > 10
and h/w < 3
and w/h < 10
and (60 // h) * w < 1000):
boxes += [[x, y, w, h]]
index = hierarchy[0][index][0]
if join:
# Need more work
boxes = _group_rectangles(boxes)
# image for drawing bounding boxes
small = cv2.cvtColor(small, cv2.COLOR_GRAY2RGB)
bounding_boxes = np.array([0,0,0,0])
for (x, y, w, h) in boxes:
cv2.rectangle(small, (x, y),(x+w,y+h), (0, 255, 0), 2)
bounding_boxes = np.vstack((bounding_boxes,
np.array([x, y, x+w, y+h])))
implt(small, t='Bounding rectangles')
boxes = bounding_boxes.dot(ratio(image, small.shape[0])).astype(np.int64)
return boxes[1:]
def textDetectWatershed(thresh):
"""NOT IN USE - Text detection using watershed algorithm.
Based on: http://docs.opencv.org/trunk/d3/db4/tutorial_py_watershed.html
"""
img = cv2.cvtColor(cv2.imread("data/textdet/%s.jpg" % IMG),
cv2.COLOR_BGR2RGB)
img = resize(img, 3000)
thresh = resize(thresh, 3000)
# noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 3)
# sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,
0.01*dist_transform.max(), 255, 0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)
# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers += 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
implt(markers, t='Markers')
image = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
for mark in np.unique(markers):
# mark == 0 --> background
if mark == 0:
continue
# Draw it on mask and detect biggest contour
mask = np.zeros(gray.shape, dtype="uint8")
mask[markers == mark] = 255
cnts = cv2.findContours(mask.copy(),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
c = max(cnts, key=cv2.contourArea)
# Draw a bounding rectangle if it contains text
x,y,w,h = cv2.boundingRect(c)
cv2.drawContours(mask, c, 0, (255, 255, 255), cv2.FILLED)
maskROI = mask[y:y+h, x:x+w]
# Ratio of white pixels to area of bounding rectangle
r = cv2.countNonZero(maskROI) / (w * h)
# Limits for text
if r > 0.2 and 2000 > w > 15 and 1500 > h > 15:
cv2.rectangle(image, (x, y),(x+w,y+h), (0, 255, 0), 2)
implt(image)
|