# AI assistant with a RAG system to query information from the CAMELS cosmological simulations using Langchain # Author: Pablo Villanueva Domingo import gradio as gr from langchain import hub from langchain_chroma import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_mistralai import ChatMistralAI from langchain_community.document_loaders import WebBaseLoader from langchain_core.rate_limiters import InMemoryRateLimiter # Define a limiter to avoid rate limit issues with MistralAI rate_limiter = InMemoryRateLimiter( requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request, max_bucket_size=10, # Controls the maximum burst size. ) # Get urls urlsfile = open("urls.txt") urls = urlsfile.readlines() urls = [url.replace("\n","") for url in urls] urlsfile.close() # Load, chunk and index the contents of the blog. loader = WebBaseLoader(urls) docs = loader.load() print("Pages loaded:",len(docs)) # Join content pages for processing def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) # Create a RAG chain def RAG(llm, docs, embeddings): # Split text text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) # Create vector store vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) # Retrieve and generate using the relevant snippets of the documents retriever = vectorstore.as_retriever() # Prompt basis example for RAG systems prompt = hub.pull("rlm/rag-prompt") # Create the chain rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) return rag_chain # LLM model llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter) # Embeddings embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" # embed_model = "nvidia/NV-Embed-v2" embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) # RAG chain rag_chain = RAG(llm, docs, embeddings) # Function to handle prompt and query the RAG chain def handle_prompt(message, history): try: # Stream output out="" for chunk in rag_chain.stream(message): out += chunk yield out except: raise gr.Error("Requests rate limit exceeded") # Predefined messages and examples description = "AI powered assistant which answers any question related to the [CAMELS simulations](https://www.camel-simulations.org/)." greetingsmessage = "Hi, I'm the CAMELS DocBot, I'm here to assist you with any question related to the CAMELS simulations." example_questions = [ "How can I read a halo file?", "Which simulation suites are included in CAMELS?", "Which are the largest volumes in CAMELS simulations?", "Write a complete snippet of code getting the power spectrum of a simulation" ] # Define customized Gradio chatbot chatbot = gr.Chatbot([{"role":"assistant", "content":greetingsmessage}], type="messages", avatar_images=["ims/userpic.png","ims/camelslogo.jpg"], height="60vh") # Define Gradio interface demo = gr.ChatInterface(handle_prompt, type="messages", title="CAMELS DocBot", fill_height=True, examples=example_questions, theme=gr.themes.Soft(), description=description, cache_examples=False, chatbot=chatbot) demo.launch()