Spaces:
Running
Running
File size: 4,089 Bytes
3ad9a49 114ce4a f3576a5 e19a241 f3576a5 114ce4a e19a241 35d69cc f3576a5 2ccbf76 f3576a5 3ad9a49 e19a241 f3576a5 e19a241 f3576a5 114ce4a 3ad9a49 114ce4a f3576a5 114ce4a 3ad9a49 114ce4a e19a241 114ce4a e19a241 114ce4a 3ad9a49 e19a241 3ad9a49 95d3fc0 3ad9a49 95d3fc0 3ad9a49 114ce4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
# AI assistant with a RAG system to query information from the CAMELS cosmological simulations using Langchain
# Author: Pablo Villanueva Domingo
import gradio as gr
from langchain import hub
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_mistralai import ChatMistralAI
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.rate_limiters import InMemoryRateLimiter
# Define a limiter to avoid rate limit issues with MistralAI
rate_limiter = InMemoryRateLimiter(
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
max_bucket_size=10, # Controls the maximum burst size.
)
# Get urls
urlsfile = open("urls.txt")
urls = urlsfile.readlines()
urls = [url.replace("\n","") for url in urls]
urlsfile.close()
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(urls)
docs = loader.load()
print("Pages loaded:",len(docs))
# Join content pages for processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# Create a RAG chain
def RAG(llm, docs, embeddings):
# Split text
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
# Create vector store
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
# Retrieve and generate using the relevant snippets of the documents
retriever = vectorstore.as_retriever()
# Prompt basis example for RAG systems
prompt = hub.pull("rlm/rag-prompt")
# Create the chain
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return rag_chain
# LLM model
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
# Embeddings
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
# embed_model = "nvidia/NV-Embed-v2"
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
# RAG chain
rag_chain = RAG(llm, docs, embeddings)
# Function to handle prompt and query the RAG chain
def handle_prompt(message, history):
try:
# Stream output
out=""
for chunk in rag_chain.stream(message):
out += chunk
yield out
except:
raise gr.Error("Requests rate limit exceeded")
# Predefined messages and examples
description = "AI powered assistant which answers any question related to the [CAMELS simulations](https://www.camel-simulations.org/)."
greetingsmessage = "Hi, I'm the CAMELS DocBot, I'm here to assist you with any question related to the CAMELS simulations."
example_questions = [
"How can I read a halo file?",
"Which simulation suites are included in CAMELS?",
"Which are the largest volumes in CAMELS simulations?",
"Write a complete snippet of code getting the power spectrum of a simulation"
]
# Define customized Gradio chatbot
chatbot = gr.Chatbot([{"role":"assistant", "content":greetingsmessage}],
type="messages",
avatar_images=["ims/userpic.png","ims/camelslogo.jpg"],
height="60vh")
# Define Gradio interface
demo = gr.ChatInterface(handle_prompt,
type="messages",
title="CAMELS DocBot",
fill_height=True,
examples=example_questions,
theme=gr.themes.Soft(),
description=description,
cache_examples=False,
chatbot=chatbot)
demo.launch() |