Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration, T5TokenizerFast, TFT5ForConditionalGeneration, FlaxT5ForConditionalGeneration
|
3 |
+
import evaluate
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import pandas as pd
|
7 |
+
import gradio as gr
|
8 |
+
import requests
|
9 |
+
|
10 |
+
Q_LEN = 256
|
11 |
+
|
12 |
+
model_name = 'PRAli22/t5-base-question-answering-system'
|
13 |
+
tokenizer = T5TokenizerFast.from_pretrained(model_name)
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
15 |
+
|
16 |
+
def predict_answer(context, question, ref_answer=None):
|
17 |
+
inputs = tokenizer(question, context, max_length=Q_LEN, padding="max_length", truncation=True, add_special_tokens=True)
|
18 |
+
|
19 |
+
input_ids = torch.tensor(inputs["input_ids"], dtype=torch.long).unsqueeze(0)
|
20 |
+
attention_mask = torch.tensor(inputs["attention_mask"], dtype=torch.long).unsqueeze(0)
|
21 |
+
|
22 |
+
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
23 |
+
|
24 |
+
predicted_answer = tokenizer.decode(outputs.flatten(), skip_special_tokens=True)
|
25 |
+
|
26 |
+
if ref_answer:
|
27 |
+
# Load the Bleu metric
|
28 |
+
bleu = evaluate.load("google_bleu")
|
29 |
+
score = bleu.compute(predictions=[predicted_answer],
|
30 |
+
references=[ref_answer])
|
31 |
+
|
32 |
+
print("Context: \n", context)
|
33 |
+
print("\n")
|
34 |
+
print("Question: \n", question)
|
35 |
+
return {
|
36 |
+
"Reference Answer: ": ref_answer,
|
37 |
+
"Predicted Answer: ": predicted_answer,
|
38 |
+
"BLEU Score: ": score
|
39 |
+
}
|
40 |
+
else:
|
41 |
+
return predicted_answer
|
42 |
+
|
43 |
+
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}'
|
44 |
+
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=predict_answer,
|
47 |
+
inputs=[
|
48 |
+
gr.Textbox(label="text", placeholder="Enter the text "),
|
49 |
+
gr.Textbox(label="question", placeholder="Enter the question")
|
50 |
+
],
|
51 |
+
outputs=gr.Textbox(label="answer"),
|
52 |
+
title="Question Answering System",
|
53 |
+
description= "This is Question Answering System, it takes a text and question in English as inputs and returns it's answer",
|
54 |
+
css = css_code
|
55 |
+
)
|
56 |
+
|
57 |
+
demo.launch(share=True)
|