PRAli22 commited on
Commit
148e2b5
·
1 Parent(s): 22c8fd3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+ from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration, T5TokenizerFast, TFT5ForConditionalGeneration, FlaxT5ForConditionalGeneration
3
+ import evaluate
4
+ import torch
5
+ import torch.nn as nn
6
+ import pandas as pd
7
+ import gradio as gr
8
+ import requests
9
+
10
+ Q_LEN = 256
11
+
12
+ model_name = 'PRAli22/t5-base-question-answering-system'
13
+ tokenizer = T5TokenizerFast.from_pretrained(model_name)
14
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
15
+
16
+ def predict_answer(context, question, ref_answer=None):
17
+ inputs = tokenizer(question, context, max_length=Q_LEN, padding="max_length", truncation=True, add_special_tokens=True)
18
+
19
+ input_ids = torch.tensor(inputs["input_ids"], dtype=torch.long).unsqueeze(0)
20
+ attention_mask = torch.tensor(inputs["attention_mask"], dtype=torch.long).unsqueeze(0)
21
+
22
+ outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask)
23
+
24
+ predicted_answer = tokenizer.decode(outputs.flatten(), skip_special_tokens=True)
25
+
26
+ if ref_answer:
27
+ # Load the Bleu metric
28
+ bleu = evaluate.load("google_bleu")
29
+ score = bleu.compute(predictions=[predicted_answer],
30
+ references=[ref_answer])
31
+
32
+ print("Context: \n", context)
33
+ print("\n")
34
+ print("Question: \n", question)
35
+ return {
36
+ "Reference Answer: ": ref_answer,
37
+ "Predicted Answer: ": predicted_answer,
38
+ "BLEU Score: ": score
39
+ }
40
+ else:
41
+ return predicted_answer
42
+
43
+ css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}'
44
+
45
+ demo = gr.Interface(
46
+ fn=predict_answer,
47
+ inputs=[
48
+ gr.Textbox(label="text", placeholder="Enter the text "),
49
+ gr.Textbox(label="question", placeholder="Enter the question")
50
+ ],
51
+ outputs=gr.Textbox(label="answer"),
52
+ title="Question Answering System",
53
+ description= "This is Question Answering System, it takes a text and question in English as inputs and returns it's answer",
54
+ css = css_code
55
+ )
56
+
57
+ demo.launch(share=True)