import spaces import gradio as gr import torch from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer from string import punctuation import re from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed device = "cuda:0" if torch.cuda.is_available() else "cpu" repo_id = "PHBJT/french_parler_tts_mini_v0.1" model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." default_description = "The voice speaks slowly with a very noisy background, carrying a low-pitch tone and displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue." examples = [ [ "La voix humaine est un instrument de musique au-dessus de tous les autres.", "The voice speaks slowly with a very noisy background, carrying a low-pitch tone and displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue.", None, ], [ "Tout ce qu'un homme est capable d'imaginer, d'autres hommes seront capables de le réaliser.", "A slightly expressive and animated speech with a moderate speed. The recording features a low-pitch voice and slight background noise, creating a close-sounding audio experience.", None, ], [ "La machine elle-même, si perfectionnée qu'on la suppose, n'est qu'un outil.", "A monotone yet slightly fast delivery, with a very close recording that almost has no background noise.", None, ], [ "Le progrès fait naître plus de besoins qu'il n'en satisfait.", "In a very poor recording quality, the voice delivers slightly expressive and animated words with a fast pace. There's a high level of background noise and a very distant-sounding reverberation. The voice is slightly higher pitched than average.", None, ], ] number_normalizer = EnglishNumberNormalizer() def preprocess(text): text = number_normalizer(text).strip() text = text.replace("-", " ") if text[-1] not in punctuation: text = f"{text}." abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' def separate_abb(chunk): chunk = chunk.replace(".","") print(chunk) return " ".join(chunk) abbreviations = re.findall(abbreviations_pattern, text) for abv in abbreviations: if abv in text: text = text.replace(abv, separate_abb(abv)) return text @spaces.GPU def gen_tts(text, description): inputs = tokenizer(description.strip(), return_tensors="pt").to(device) prompt = tokenizer(preprocess(text), return_tensors="pt").to(device) set_seed(SEED) generation = model.generate( input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0 ) audio_arr = generation.cpu().numpy().squeeze() return SAMPLE_RATE, audio_arr css = """ #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; flex: unset !important; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor: pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; right:0; } #share-btn * { all: unset !important; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } """ with gr.Blocks(css=css) as block: gr.HTML( """

French Parler-TTS 🗣️

""" ) gr.HTML( f"""

Parler-TTS is a training and inference library for high-fidelity text-to-speech (TTS) models.

The model demonstrated here, French Parler-TTS Mini v0.1 French, has been fine-tuned on a French dataset. It generates high-quality male speech with features that can be controlled using a simple text prompt (e.g. background noise, speaking rate, pitch and reverberation). Please note that this model currently supports only male voices (due to limitations on the dataset).

By default, Parler-TTS generates 🎲 random male voice characteristics. To ensure 🎯 speaker consistency across generations, try to use consistent descriptions in your prompts.

""" ) with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description") run_button = gr.Button("Generate Audio", variant="primary") with gr.Column(): audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out") inputs = [input_text, description] outputs = [audio_out] run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True) gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True) gr.HTML( """

Tips for ensuring good generation:

If you want to find out more about how this model was trained and even fine tune Parler TTS in any language, check-out