OzzyGT HF Staff commited on
Commit
e07d759
·
1 Parent(s): aeeb2b0

fix and update

Browse files
Files changed (4) hide show
  1. app.py +54 -42
  2. controlnet_union.py +0 -1085
  3. pipeline_fill_sd_xl.py +0 -559
  4. requirements.txt +5 -5
app.py CHANGED
@@ -1,45 +1,53 @@
1
  import gradio as gr
2
  import spaces
3
  import torch
4
- from diffusers import AutoencoderKL, TCDScheduler
5
- from diffusers.models.model_loading_utils import load_state_dict
6
- from gradio_imageslider import ImageSlider
7
- from huggingface_hub import hf_hub_download
8
 
9
- from controlnet_union import ControlNetModel_Union
10
- from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  MODELS = {
13
  "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
14
  }
15
 
16
- config_file = hf_hub_download(
17
- "xinsir/controlnet-union-sdxl-1.0",
18
- filename="config_promax.json",
19
  )
 
 
20
 
21
- config = ControlNetModel_Union.load_config(config_file)
22
- controlnet_model = ControlNetModel_Union.from_config(config)
23
- model_file = hf_hub_download(
24
- "xinsir/controlnet-union-sdxl-1.0",
25
- filename="diffusion_pytorch_model_promax.safetensors",
26
- )
27
- state_dict = load_state_dict(model_file)
28
- model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
29
- controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
30
- )
31
- model.to(device="cuda", dtype=torch.float16)
32
-
33
- vae = AutoencoderKL.from_pretrained(
34
- "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
35
- ).to("cuda")
36
-
37
- pipe = StableDiffusionXLFillPipeline.from_pretrained(
38
  "SG161222/RealVisXL_V5.0_Lightning",
39
  torch_dtype=torch.float16,
40
  vae=vae,
41
- controlnet=model,
42
- variant="fp16",
43
  ).to("cuda")
44
 
45
  pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
@@ -50,7 +58,7 @@ prompt = "high quality"
50
  negative_prompt_embeds,
51
  pooled_prompt_embeds,
52
  negative_pooled_prompt_embeds,
53
- ) = pipe.encode_prompt(prompt, "cuda", True)
54
 
55
 
56
  @spaces.GPU(duration=16)
@@ -63,14 +71,25 @@ def fill_image(image, model_selection):
63
  cnet_image = source.copy()
64
  cnet_image.paste(0, (0, 0), binary_mask)
65
 
66
- for image in pipe(
67
  prompt_embeds=prompt_embeds,
68
  negative_prompt_embeds=negative_prompt_embeds,
69
  pooled_prompt_embeds=pooled_prompt_embeds,
70
  negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
71
- image=cnet_image,
72
- ):
73
- yield image, cnet_image
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  image = image.convert("RGBA")
76
  cnet_image.paste(image, (0, 0), binary_mask)
@@ -82,19 +101,12 @@ def clear_result():
82
  return gr.update(value=None)
83
 
84
 
85
- css = """
86
- .gradio-container {
87
- width: 1024px !important;
88
- }
89
- """
90
-
91
-
92
  title = """<h1 align="center">Diffusers Image Fill</h1>
93
  <div align="center">Draw the mask over the subject you want to erase or change.</div>
94
  <div align="center">This space is a PoC made for the guide <a href='https://huggingface.co/blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div>
95
  """
96
 
97
- with gr.Blocks(css=css) as demo:
98
  gr.HTML(title)
99
 
100
  run_button = gr.Button("Generate")
@@ -109,7 +121,7 @@ with gr.Blocks(css=css) as demo:
109
  sources=["upload"],
110
  )
111
 
112
- result = ImageSlider(
113
  interactive=False,
114
  label="Generated Image",
115
  )
 
1
  import gradio as gr
2
  import spaces
3
  import torch
 
 
 
 
4
 
5
+ from diffusers import AutoencoderKL, ControlNetUnionModel, DiffusionPipeline, TCDScheduler
6
+
7
+
8
+ def callback_cfg_cutoff(pipeline, step_index, timestep, callback_kwargs):
9
+ if step_index == int(pipeline.num_timesteps * 0.2):
10
+ prompt_embeds = callback_kwargs["prompt_embeds"]
11
+ prompt_embeds = prompt_embeds[-1:]
12
+
13
+ add_text_embeds = callback_kwargs["add_text_embeds"]
14
+ add_text_embeds = add_text_embeds[-1:]
15
+
16
+ add_time_ids = callback_kwargs["add_time_ids"]
17
+ add_time_ids = add_time_ids[-1:]
18
+
19
+ control_image = callback_kwargs["control_image"]
20
+ control_image[0] = control_image[0][-1:]
21
+
22
+ control_type = callback_kwargs["control_type"]
23
+ control_type = control_type[-1:]
24
+
25
+ pipeline._guidance_scale = 0.0
26
+ callback_kwargs["prompt_embeds"] = prompt_embeds
27
+ callback_kwargs["add_text_embeds"] = add_text_embeds
28
+ callback_kwargs["add_time_ids"] = add_time_ids
29
+ callback_kwargs["control_image"] = control_image
30
+ callback_kwargs["control_type"] = control_type
31
+
32
+ return callback_kwargs
33
+
34
 
35
  MODELS = {
36
  "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
37
  }
38
 
39
+ controlnet_model = ControlNetUnionModel.from_pretrained(
40
+ "OzzyGT/controlnet-union-promax-sdxl-1.0", variant="fp16", torch_dtype=torch.float16
 
41
  )
42
+ controlnet_model.to(device="cuda", dtype=torch.float16)
43
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
44
 
45
+ pipe = DiffusionPipeline.from_pretrained(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  "SG161222/RealVisXL_V5.0_Lightning",
47
  torch_dtype=torch.float16,
48
  vae=vae,
49
+ controlnet=controlnet_model,
50
+ custom_pipeline="OzzyGT/custom_sdxl_cnet_union",
51
  ).to("cuda")
52
 
53
  pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
 
58
  negative_prompt_embeds,
59
  pooled_prompt_embeds,
60
  negative_pooled_prompt_embeds,
61
+ ) = pipe.encode_prompt(prompt, "cuda")
62
 
63
 
64
  @spaces.GPU(duration=16)
 
71
  cnet_image = source.copy()
72
  cnet_image.paste(0, (0, 0), binary_mask)
73
 
74
+ image = pipe(
75
  prompt_embeds=prompt_embeds,
76
  negative_prompt_embeds=negative_prompt_embeds,
77
  pooled_prompt_embeds=pooled_prompt_embeds,
78
  negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
79
+ control_image=[cnet_image],
80
+ controlnet_conditioning_scale=[1.0],
81
+ control_mode=[7],
82
+ num_inference_steps=8,
83
+ guidance_scale=1.5,
84
+ callback_on_step_end=callback_cfg_cutoff,
85
+ callback_on_step_end_tensor_inputs=[
86
+ "prompt_embeds",
87
+ "add_text_embeds",
88
+ "add_time_ids",
89
+ "control_image",
90
+ "control_type",
91
+ ],
92
+ ).images[0]
93
 
94
  image = image.convert("RGBA")
95
  cnet_image.paste(image, (0, 0), binary_mask)
 
101
  return gr.update(value=None)
102
 
103
 
 
 
 
 
 
 
 
104
  title = """<h1 align="center">Diffusers Image Fill</h1>
105
  <div align="center">Draw the mask over the subject you want to erase or change.</div>
106
  <div align="center">This space is a PoC made for the guide <a href='https://huggingface.co/blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div>
107
  """
108
 
109
+ with gr.Blocks() as demo:
110
  gr.HTML(title)
111
 
112
  run_button = gr.Button("Generate")
 
121
  sources=["upload"],
122
  )
123
 
124
+ result = gr.ImageSlider(
125
  interactive=False,
126
  label="Generated Image",
127
  )
controlnet_union.py DELETED
@@ -1,1085 +0,0 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- from collections import OrderedDict
15
- from dataclasses import dataclass
16
- from typing import Any, Dict, List, Optional, Tuple, Union
17
-
18
- import torch
19
- from diffusers.configuration_utils import ConfigMixin, register_to_config
20
- from diffusers.loaders import FromOriginalModelMixin
21
- from diffusers.models.attention_processor import (
22
- ADDED_KV_ATTENTION_PROCESSORS,
23
- CROSS_ATTENTION_PROCESSORS,
24
- AttentionProcessor,
25
- AttnAddedKVProcessor,
26
- AttnProcessor,
27
- )
28
- from diffusers.models.embeddings import (
29
- TextImageProjection,
30
- TextImageTimeEmbedding,
31
- TextTimeEmbedding,
32
- TimestepEmbedding,
33
- Timesteps,
34
- )
35
- from diffusers.models.modeling_utils import ModelMixin
36
- from diffusers.models.unets.unet_2d_blocks import (
37
- CrossAttnDownBlock2D,
38
- DownBlock2D,
39
- UNetMidBlock2DCrossAttn,
40
- get_down_block,
41
- )
42
- from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
43
- from diffusers.utils import BaseOutput, logging
44
- from torch import nn
45
- from torch.nn import functional as F
46
-
47
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
-
49
-
50
- # Transformer Block
51
- # Used to exchange info between different conditions and input image
52
- # With reference to https://github.com/TencentARC/T2I-Adapter/blob/SD/ldm/modules/encoders/adapter.py#L147
53
- class QuickGELU(nn.Module):
54
- def forward(self, x: torch.Tensor):
55
- return x * torch.sigmoid(1.702 * x)
56
-
57
-
58
- class LayerNorm(nn.LayerNorm):
59
- """Subclass torch's LayerNorm to handle fp16."""
60
-
61
- def forward(self, x: torch.Tensor):
62
- orig_type = x.dtype
63
- ret = super().forward(x)
64
- return ret.type(orig_type)
65
-
66
-
67
- class ResidualAttentionBlock(nn.Module):
68
- def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
69
- super().__init__()
70
-
71
- self.attn = nn.MultiheadAttention(d_model, n_head)
72
- self.ln_1 = LayerNorm(d_model)
73
- self.mlp = nn.Sequential(
74
- OrderedDict(
75
- [
76
- ("c_fc", nn.Linear(d_model, d_model * 4)),
77
- ("gelu", QuickGELU()),
78
- ("c_proj", nn.Linear(d_model * 4, d_model)),
79
- ]
80
- )
81
- )
82
- self.ln_2 = LayerNorm(d_model)
83
- self.attn_mask = attn_mask
84
-
85
- def attention(self, x: torch.Tensor):
86
- self.attn_mask = (
87
- self.attn_mask.to(dtype=x.dtype, device=x.device)
88
- if self.attn_mask is not None
89
- else None
90
- )
91
- return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
92
-
93
- def forward(self, x: torch.Tensor):
94
- x = x + self.attention(self.ln_1(x))
95
- x = x + self.mlp(self.ln_2(x))
96
- return x
97
-
98
-
99
- # -----------------------------------------------------------------------------------------------------
100
-
101
-
102
- @dataclass
103
- class ControlNetOutput(BaseOutput):
104
- """
105
- The output of [`ControlNetModel`].
106
-
107
- Args:
108
- down_block_res_samples (`tuple[torch.Tensor]`):
109
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
110
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
111
- used to condition the original UNet's downsampling activations.
112
- mid_down_block_re_sample (`torch.Tensor`):
113
- The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
114
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
115
- Output can be used to condition the original UNet's middle block activation.
116
- """
117
-
118
- down_block_res_samples: Tuple[torch.Tensor]
119
- mid_block_res_sample: torch.Tensor
120
-
121
-
122
- class ControlNetConditioningEmbedding(nn.Module):
123
- """
124
- Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
125
- [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
126
- training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
127
- convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
128
- (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
129
- model) to encode image-space conditions ... into feature maps ..."
130
- """
131
-
132
- # original setting is (16, 32, 96, 256)
133
- def __init__(
134
- self,
135
- conditioning_embedding_channels: int,
136
- conditioning_channels: int = 3,
137
- block_out_channels: Tuple[int] = (48, 96, 192, 384),
138
- ):
139
- super().__init__()
140
-
141
- self.conv_in = nn.Conv2d(
142
- conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
143
- )
144
-
145
- self.blocks = nn.ModuleList([])
146
-
147
- for i in range(len(block_out_channels) - 1):
148
- channel_in = block_out_channels[i]
149
- channel_out = block_out_channels[i + 1]
150
- self.blocks.append(
151
- nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)
152
- )
153
- self.blocks.append(
154
- nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)
155
- )
156
-
157
- self.conv_out = zero_module(
158
- nn.Conv2d(
159
- block_out_channels[-1],
160
- conditioning_embedding_channels,
161
- kernel_size=3,
162
- padding=1,
163
- )
164
- )
165
-
166
- def forward(self, conditioning):
167
- embedding = self.conv_in(conditioning)
168
- embedding = F.silu(embedding)
169
-
170
- for block in self.blocks:
171
- embedding = block(embedding)
172
- embedding = F.silu(embedding)
173
-
174
- embedding = self.conv_out(embedding)
175
-
176
- return embedding
177
-
178
-
179
- class ControlNetModel_Union(ModelMixin, ConfigMixin, FromOriginalModelMixin):
180
- """
181
- A ControlNet model.
182
-
183
- Args:
184
- in_channels (`int`, defaults to 4):
185
- The number of channels in the input sample.
186
- flip_sin_to_cos (`bool`, defaults to `True`):
187
- Whether to flip the sin to cos in the time embedding.
188
- freq_shift (`int`, defaults to 0):
189
- The frequency shift to apply to the time embedding.
190
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
191
- The tuple of downsample blocks to use.
192
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
193
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
194
- The tuple of output channels for each block.
195
- layers_per_block (`int`, defaults to 2):
196
- The number of layers per block.
197
- downsample_padding (`int`, defaults to 1):
198
- The padding to use for the downsampling convolution.
199
- mid_block_scale_factor (`float`, defaults to 1):
200
- The scale factor to use for the mid block.
201
- act_fn (`str`, defaults to "silu"):
202
- The activation function to use.
203
- norm_num_groups (`int`, *optional*, defaults to 32):
204
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
205
- in post-processing.
206
- norm_eps (`float`, defaults to 1e-5):
207
- The epsilon to use for the normalization.
208
- cross_attention_dim (`int`, defaults to 1280):
209
- The dimension of the cross attention features.
210
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
211
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
212
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
213
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
214
- encoder_hid_dim (`int`, *optional*, defaults to None):
215
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
216
- dimension to `cross_attention_dim`.
217
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
218
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
219
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
220
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
221
- The dimension of the attention heads.
222
- use_linear_projection (`bool`, defaults to `False`):
223
- class_embed_type (`str`, *optional*, defaults to `None`):
224
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
225
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
226
- addition_embed_type (`str`, *optional*, defaults to `None`):
227
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
228
- "text". "text" will use the `TextTimeEmbedding` layer.
229
- num_class_embeds (`int`, *optional*, defaults to 0):
230
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
231
- class conditioning with `class_embed_type` equal to `None`.
232
- upcast_attention (`bool`, defaults to `False`):
233
- resnet_time_scale_shift (`str`, defaults to `"default"`):
234
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
235
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
236
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
237
- `class_embed_type="projection"`.
238
- controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
239
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
240
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
241
- The tuple of output channel for each block in the `conditioning_embedding` layer.
242
- global_pool_conditions (`bool`, defaults to `False`):
243
- """
244
-
245
- _supports_gradient_checkpointing = True
246
-
247
- @register_to_config
248
- def __init__(
249
- self,
250
- in_channels: int = 4,
251
- conditioning_channels: int = 3,
252
- flip_sin_to_cos: bool = True,
253
- freq_shift: int = 0,
254
- down_block_types: Tuple[str] = (
255
- "CrossAttnDownBlock2D",
256
- "CrossAttnDownBlock2D",
257
- "CrossAttnDownBlock2D",
258
- "DownBlock2D",
259
- ),
260
- only_cross_attention: Union[bool, Tuple[bool]] = False,
261
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
262
- layers_per_block: int = 2,
263
- downsample_padding: int = 1,
264
- mid_block_scale_factor: float = 1,
265
- act_fn: str = "silu",
266
- norm_num_groups: Optional[int] = 32,
267
- norm_eps: float = 1e-5,
268
- cross_attention_dim: int = 1280,
269
- transformer_layers_per_block: Union[int, Tuple[int]] = 1,
270
- encoder_hid_dim: Optional[int] = None,
271
- encoder_hid_dim_type: Optional[str] = None,
272
- attention_head_dim: Union[int, Tuple[int]] = 8,
273
- num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
274
- use_linear_projection: bool = False,
275
- class_embed_type: Optional[str] = None,
276
- addition_embed_type: Optional[str] = None,
277
- addition_time_embed_dim: Optional[int] = None,
278
- num_class_embeds: Optional[int] = None,
279
- upcast_attention: bool = False,
280
- resnet_time_scale_shift: str = "default",
281
- projection_class_embeddings_input_dim: Optional[int] = None,
282
- controlnet_conditioning_channel_order: str = "rgb",
283
- conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
284
- global_pool_conditions: bool = False,
285
- addition_embed_type_num_heads=64,
286
- num_control_type=6,
287
- ):
288
- super().__init__()
289
-
290
- # If `num_attention_heads` is not defined (which is the case for most models)
291
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
292
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
293
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
294
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
295
- # which is why we correct for the naming here.
296
- num_attention_heads = num_attention_heads or attention_head_dim
297
-
298
- # Check inputs
299
- if len(block_out_channels) != len(down_block_types):
300
- raise ValueError(
301
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
302
- )
303
-
304
- if not isinstance(only_cross_attention, bool) and len(
305
- only_cross_attention
306
- ) != len(down_block_types):
307
- raise ValueError(
308
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
309
- )
310
-
311
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
312
- down_block_types
313
- ):
314
- raise ValueError(
315
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
316
- )
317
-
318
- if isinstance(transformer_layers_per_block, int):
319
- transformer_layers_per_block = [transformer_layers_per_block] * len(
320
- down_block_types
321
- )
322
-
323
- # input
324
- conv_in_kernel = 3
325
- conv_in_padding = (conv_in_kernel - 1) // 2
326
- self.conv_in = nn.Conv2d(
327
- in_channels,
328
- block_out_channels[0],
329
- kernel_size=conv_in_kernel,
330
- padding=conv_in_padding,
331
- )
332
-
333
- # time
334
- time_embed_dim = block_out_channels[0] * 4
335
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
336
- timestep_input_dim = block_out_channels[0]
337
- self.time_embedding = TimestepEmbedding(
338
- timestep_input_dim,
339
- time_embed_dim,
340
- act_fn=act_fn,
341
- )
342
-
343
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
344
- encoder_hid_dim_type = "text_proj"
345
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
346
- logger.info(
347
- "encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
348
- )
349
-
350
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
351
- raise ValueError(
352
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
353
- )
354
-
355
- if encoder_hid_dim_type == "text_proj":
356
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
357
- elif encoder_hid_dim_type == "text_image_proj":
358
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
359
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
360
- # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
361
- self.encoder_hid_proj = TextImageProjection(
362
- text_embed_dim=encoder_hid_dim,
363
- image_embed_dim=cross_attention_dim,
364
- cross_attention_dim=cross_attention_dim,
365
- )
366
-
367
- elif encoder_hid_dim_type is not None:
368
- raise ValueError(
369
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
370
- )
371
- else:
372
- self.encoder_hid_proj = None
373
-
374
- # class embedding
375
- if class_embed_type is None and num_class_embeds is not None:
376
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
377
- elif class_embed_type == "timestep":
378
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
379
- elif class_embed_type == "identity":
380
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
381
- elif class_embed_type == "projection":
382
- if projection_class_embeddings_input_dim is None:
383
- raise ValueError(
384
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
385
- )
386
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
387
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
388
- # 2. it projects from an arbitrary input dimension.
389
- #
390
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
391
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
392
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
393
- self.class_embedding = TimestepEmbedding(
394
- projection_class_embeddings_input_dim, time_embed_dim
395
- )
396
- else:
397
- self.class_embedding = None
398
-
399
- if addition_embed_type == "text":
400
- if encoder_hid_dim is not None:
401
- text_time_embedding_from_dim = encoder_hid_dim
402
- else:
403
- text_time_embedding_from_dim = cross_attention_dim
404
-
405
- self.add_embedding = TextTimeEmbedding(
406
- text_time_embedding_from_dim,
407
- time_embed_dim,
408
- num_heads=addition_embed_type_num_heads,
409
- )
410
- elif addition_embed_type == "text_image":
411
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
412
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
413
- # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
414
- self.add_embedding = TextImageTimeEmbedding(
415
- text_embed_dim=cross_attention_dim,
416
- image_embed_dim=cross_attention_dim,
417
- time_embed_dim=time_embed_dim,
418
- )
419
- elif addition_embed_type == "text_time":
420
- self.add_time_proj = Timesteps(
421
- addition_time_embed_dim, flip_sin_to_cos, freq_shift
422
- )
423
- self.add_embedding = TimestepEmbedding(
424
- projection_class_embeddings_input_dim, time_embed_dim
425
- )
426
-
427
- elif addition_embed_type is not None:
428
- raise ValueError(
429
- f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
430
- )
431
-
432
- # control net conditioning embedding
433
- self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
434
- conditioning_embedding_channels=block_out_channels[0],
435
- block_out_channels=conditioning_embedding_out_channels,
436
- conditioning_channels=conditioning_channels,
437
- )
438
-
439
- # Copyright by Qi Xin(2024/07/06)
440
- # Condition Transformer(fuse single/multi conditions with input image)
441
- # The Condition Transformer augment the feature representation of conditions
442
- # The overall design is somewhat like resnet. The output of Condition Transformer is used to predict a condition bias adding to the original condition feature.
443
- # num_control_type = 6
444
- num_trans_channel = 320
445
- num_trans_head = 8
446
- num_trans_layer = 1
447
- num_proj_channel = 320
448
- task_scale_factor = num_trans_channel**0.5
449
-
450
- self.task_embedding = nn.Parameter(
451
- task_scale_factor * torch.randn(num_control_type, num_trans_channel)
452
- )
453
- self.transformer_layes = nn.Sequential(
454
- *[
455
- ResidualAttentionBlock(num_trans_channel, num_trans_head)
456
- for _ in range(num_trans_layer)
457
- ]
458
- )
459
- self.spatial_ch_projs = zero_module(
460
- nn.Linear(num_trans_channel, num_proj_channel)
461
- )
462
- # -----------------------------------------------------------------------------------------------------
463
-
464
- # Copyright by Qi Xin(2024/07/06)
465
- # Control Encoder to distinguish different control conditions
466
- # A simple but effective module, consists of an embedding layer and a linear layer, to inject the control info to time embedding.
467
- self.control_type_proj = Timesteps(
468
- addition_time_embed_dim, flip_sin_to_cos, freq_shift
469
- )
470
- self.control_add_embedding = TimestepEmbedding(
471
- addition_time_embed_dim * num_control_type, time_embed_dim
472
- )
473
- # -----------------------------------------------------------------------------------------------------
474
-
475
- self.down_blocks = nn.ModuleList([])
476
- self.controlnet_down_blocks = nn.ModuleList([])
477
-
478
- if isinstance(only_cross_attention, bool):
479
- only_cross_attention = [only_cross_attention] * len(down_block_types)
480
-
481
- if isinstance(attention_head_dim, int):
482
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
483
-
484
- if isinstance(num_attention_heads, int):
485
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
486
-
487
- # down
488
- output_channel = block_out_channels[0]
489
-
490
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
491
- controlnet_block = zero_module(controlnet_block)
492
- self.controlnet_down_blocks.append(controlnet_block)
493
-
494
- for i, down_block_type in enumerate(down_block_types):
495
- input_channel = output_channel
496
- output_channel = block_out_channels[i]
497
- is_final_block = i == len(block_out_channels) - 1
498
-
499
- down_block = get_down_block(
500
- down_block_type,
501
- num_layers=layers_per_block,
502
- transformer_layers_per_block=transformer_layers_per_block[i],
503
- in_channels=input_channel,
504
- out_channels=output_channel,
505
- temb_channels=time_embed_dim,
506
- add_downsample=not is_final_block,
507
- resnet_eps=norm_eps,
508
- resnet_act_fn=act_fn,
509
- resnet_groups=norm_num_groups,
510
- cross_attention_dim=cross_attention_dim,
511
- num_attention_heads=num_attention_heads[i],
512
- attention_head_dim=attention_head_dim[i]
513
- if attention_head_dim[i] is not None
514
- else output_channel,
515
- downsample_padding=downsample_padding,
516
- use_linear_projection=use_linear_projection,
517
- only_cross_attention=only_cross_attention[i],
518
- upcast_attention=upcast_attention,
519
- resnet_time_scale_shift=resnet_time_scale_shift,
520
- )
521
- self.down_blocks.append(down_block)
522
-
523
- for _ in range(layers_per_block):
524
- controlnet_block = nn.Conv2d(
525
- output_channel, output_channel, kernel_size=1
526
- )
527
- controlnet_block = zero_module(controlnet_block)
528
- self.controlnet_down_blocks.append(controlnet_block)
529
-
530
- if not is_final_block:
531
- controlnet_block = nn.Conv2d(
532
- output_channel, output_channel, kernel_size=1
533
- )
534
- controlnet_block = zero_module(controlnet_block)
535
- self.controlnet_down_blocks.append(controlnet_block)
536
-
537
- # mid
538
- mid_block_channel = block_out_channels[-1]
539
-
540
- controlnet_block = nn.Conv2d(
541
- mid_block_channel, mid_block_channel, kernel_size=1
542
- )
543
- controlnet_block = zero_module(controlnet_block)
544
- self.controlnet_mid_block = controlnet_block
545
-
546
- self.mid_block = UNetMidBlock2DCrossAttn(
547
- transformer_layers_per_block=transformer_layers_per_block[-1],
548
- in_channels=mid_block_channel,
549
- temb_channels=time_embed_dim,
550
- resnet_eps=norm_eps,
551
- resnet_act_fn=act_fn,
552
- output_scale_factor=mid_block_scale_factor,
553
- resnet_time_scale_shift=resnet_time_scale_shift,
554
- cross_attention_dim=cross_attention_dim,
555
- num_attention_heads=num_attention_heads[-1],
556
- resnet_groups=norm_num_groups,
557
- use_linear_projection=use_linear_projection,
558
- upcast_attention=upcast_attention,
559
- )
560
-
561
- @classmethod
562
- def from_unet(
563
- cls,
564
- unet: UNet2DConditionModel,
565
- controlnet_conditioning_channel_order: str = "rgb",
566
- conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
567
- load_weights_from_unet: bool = True,
568
- ):
569
- r"""
570
- Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
571
-
572
- Parameters:
573
- unet (`UNet2DConditionModel`):
574
- The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
575
- where applicable.
576
- """
577
- transformer_layers_per_block = (
578
- unet.config.transformer_layers_per_block
579
- if "transformer_layers_per_block" in unet.config
580
- else 1
581
- )
582
- encoder_hid_dim = (
583
- unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
584
- )
585
- encoder_hid_dim_type = (
586
- unet.config.encoder_hid_dim_type
587
- if "encoder_hid_dim_type" in unet.config
588
- else None
589
- )
590
- addition_embed_type = (
591
- unet.config.addition_embed_type
592
- if "addition_embed_type" in unet.config
593
- else None
594
- )
595
- addition_time_embed_dim = (
596
- unet.config.addition_time_embed_dim
597
- if "addition_time_embed_dim" in unet.config
598
- else None
599
- )
600
-
601
- controlnet = cls(
602
- encoder_hid_dim=encoder_hid_dim,
603
- encoder_hid_dim_type=encoder_hid_dim_type,
604
- addition_embed_type=addition_embed_type,
605
- addition_time_embed_dim=addition_time_embed_dim,
606
- transformer_layers_per_block=transformer_layers_per_block,
607
- # transformer_layers_per_block=[1, 2, 5],
608
- in_channels=unet.config.in_channels,
609
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
610
- freq_shift=unet.config.freq_shift,
611
- down_block_types=unet.config.down_block_types,
612
- only_cross_attention=unet.config.only_cross_attention,
613
- block_out_channels=unet.config.block_out_channels,
614
- layers_per_block=unet.config.layers_per_block,
615
- downsample_padding=unet.config.downsample_padding,
616
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
617
- act_fn=unet.config.act_fn,
618
- norm_num_groups=unet.config.norm_num_groups,
619
- norm_eps=unet.config.norm_eps,
620
- cross_attention_dim=unet.config.cross_attention_dim,
621
- attention_head_dim=unet.config.attention_head_dim,
622
- num_attention_heads=unet.config.num_attention_heads,
623
- use_linear_projection=unet.config.use_linear_projection,
624
- class_embed_type=unet.config.class_embed_type,
625
- num_class_embeds=unet.config.num_class_embeds,
626
- upcast_attention=unet.config.upcast_attention,
627
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
628
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
629
- controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
630
- conditioning_embedding_out_channels=conditioning_embedding_out_channels,
631
- )
632
-
633
- if load_weights_from_unet:
634
- controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
635
- controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
636
- controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
637
-
638
- if controlnet.class_embedding:
639
- controlnet.class_embedding.load_state_dict(
640
- unet.class_embedding.state_dict()
641
- )
642
-
643
- controlnet.down_blocks.load_state_dict(
644
- unet.down_blocks.state_dict(), strict=False
645
- )
646
- controlnet.mid_block.load_state_dict(
647
- unet.mid_block.state_dict(), strict=False
648
- )
649
-
650
- return controlnet
651
-
652
- @property
653
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
654
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
655
- r"""
656
- Returns:
657
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
658
- indexed by its weight name.
659
- """
660
- # set recursively
661
- processors = {}
662
-
663
- def fn_recursive_add_processors(
664
- name: str,
665
- module: torch.nn.Module,
666
- processors: Dict[str, AttentionProcessor],
667
- ):
668
- if hasattr(module, "get_processor"):
669
- processors[f"{name}.processor"] = module.get_processor(
670
- return_deprecated_lora=True
671
- )
672
-
673
- for sub_name, child in module.named_children():
674
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
675
-
676
- return processors
677
-
678
- for name, module in self.named_children():
679
- fn_recursive_add_processors(name, module, processors)
680
-
681
- return processors
682
-
683
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
684
- def set_attn_processor(
685
- self,
686
- processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
687
- _remove_lora=False,
688
- ):
689
- r"""
690
- Sets the attention processor to use to compute attention.
691
-
692
- Parameters:
693
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
694
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
695
- for **all** `Attention` layers.
696
-
697
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
698
- processor. This is strongly recommended when setting trainable attention processors.
699
-
700
- """
701
- count = len(self.attn_processors.keys())
702
-
703
- if isinstance(processor, dict) and len(processor) != count:
704
- raise ValueError(
705
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
706
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
707
- )
708
-
709
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
710
- if hasattr(module, "set_processor"):
711
- if not isinstance(processor, dict):
712
- module.set_processor(processor, _remove_lora=_remove_lora)
713
- else:
714
- module.set_processor(
715
- processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
716
- )
717
-
718
- for sub_name, child in module.named_children():
719
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
720
-
721
- for name, module in self.named_children():
722
- fn_recursive_attn_processor(name, module, processor)
723
-
724
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
725
- def set_default_attn_processor(self):
726
- """
727
- Disables custom attention processors and sets the default attention implementation.
728
- """
729
- if all(
730
- proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
731
- for proc in self.attn_processors.values()
732
- ):
733
- processor = AttnAddedKVProcessor()
734
- elif all(
735
- proc.__class__ in CROSS_ATTENTION_PROCESSORS
736
- for proc in self.attn_processors.values()
737
- ):
738
- processor = AttnProcessor()
739
- else:
740
- raise ValueError(
741
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
742
- )
743
-
744
- self.set_attn_processor(processor, _remove_lora=True)
745
-
746
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
747
- def set_attention_slice(self, slice_size):
748
- r"""
749
- Enable sliced attention computation.
750
-
751
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
752
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
753
-
754
- Args:
755
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
756
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
757
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
758
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
759
- must be a multiple of `slice_size`.
760
- """
761
- sliceable_head_dims = []
762
-
763
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
764
- if hasattr(module, "set_attention_slice"):
765
- sliceable_head_dims.append(module.sliceable_head_dim)
766
-
767
- for child in module.children():
768
- fn_recursive_retrieve_sliceable_dims(child)
769
-
770
- # retrieve number of attention layers
771
- for module in self.children():
772
- fn_recursive_retrieve_sliceable_dims(module)
773
-
774
- num_sliceable_layers = len(sliceable_head_dims)
775
-
776
- if slice_size == "auto":
777
- # half the attention head size is usually a good trade-off between
778
- # speed and memory
779
- slice_size = [dim // 2 for dim in sliceable_head_dims]
780
- elif slice_size == "max":
781
- # make smallest slice possible
782
- slice_size = num_sliceable_layers * [1]
783
-
784
- slice_size = (
785
- num_sliceable_layers * [slice_size]
786
- if not isinstance(slice_size, list)
787
- else slice_size
788
- )
789
-
790
- if len(slice_size) != len(sliceable_head_dims):
791
- raise ValueError(
792
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
793
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
794
- )
795
-
796
- for i in range(len(slice_size)):
797
- size = slice_size[i]
798
- dim = sliceable_head_dims[i]
799
- if size is not None and size > dim:
800
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
801
-
802
- # Recursively walk through all the children.
803
- # Any children which exposes the set_attention_slice method
804
- # gets the message
805
- def fn_recursive_set_attention_slice(
806
- module: torch.nn.Module, slice_size: List[int]
807
- ):
808
- if hasattr(module, "set_attention_slice"):
809
- module.set_attention_slice(slice_size.pop())
810
-
811
- for child in module.children():
812
- fn_recursive_set_attention_slice(child, slice_size)
813
-
814
- reversed_slice_size = list(reversed(slice_size))
815
- for module in self.children():
816
- fn_recursive_set_attention_slice(module, reversed_slice_size)
817
-
818
- def _set_gradient_checkpointing(self, module, value=False):
819
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
820
- module.gradient_checkpointing = value
821
-
822
- def forward(
823
- self,
824
- sample: torch.FloatTensor,
825
- timestep: Union[torch.Tensor, float, int],
826
- encoder_hidden_states: torch.Tensor,
827
- controlnet_cond_list: torch.FloatTensor,
828
- conditioning_scale: float = 1.0,
829
- class_labels: Optional[torch.Tensor] = None,
830
- timestep_cond: Optional[torch.Tensor] = None,
831
- attention_mask: Optional[torch.Tensor] = None,
832
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
833
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
834
- guess_mode: bool = False,
835
- return_dict: bool = True,
836
- ) -> Union[ControlNetOutput, Tuple]:
837
- """
838
- The [`ControlNetModel`] forward method.
839
-
840
- Args:
841
- sample (`torch.FloatTensor`):
842
- The noisy input tensor.
843
- timestep (`Union[torch.Tensor, float, int]`):
844
- The number of timesteps to denoise an input.
845
- encoder_hidden_states (`torch.Tensor`):
846
- The encoder hidden states.
847
- controlnet_cond (`torch.FloatTensor`):
848
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
849
- conditioning_scale (`float`, defaults to `1.0`):
850
- The scale factor for ControlNet outputs.
851
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
852
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
853
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
854
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
855
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
856
- embeddings.
857
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
858
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
859
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
860
- negative values to the attention scores corresponding to "discard" tokens.
861
- added_cond_kwargs (`dict`):
862
- Additional conditions for the Stable Diffusion XL UNet.
863
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
864
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
865
- guess_mode (`bool`, defaults to `False`):
866
- In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
867
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
868
- return_dict (`bool`, defaults to `True`):
869
- Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
870
-
871
- Returns:
872
- [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
873
- If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
874
- returned where the first element is the sample tensor.
875
- """
876
- # check channel order
877
- channel_order = self.config.controlnet_conditioning_channel_order
878
-
879
- if channel_order == "rgb":
880
- # in rgb order by default
881
- ...
882
- # elif channel_order == "bgr":
883
- # controlnet_cond = torch.flip(controlnet_cond, dims=[1])
884
- else:
885
- raise ValueError(
886
- f"unknown `controlnet_conditioning_channel_order`: {channel_order}"
887
- )
888
-
889
- # prepare attention_mask
890
- if attention_mask is not None:
891
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
892
- attention_mask = attention_mask.unsqueeze(1)
893
-
894
- # 1. time
895
- timesteps = timestep
896
- if not torch.is_tensor(timesteps):
897
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
898
- # This would be a good case for the `match` statement (Python 3.10+)
899
- is_mps = sample.device.type == "mps"
900
- if isinstance(timestep, float):
901
- dtype = torch.float32 if is_mps else torch.float64
902
- else:
903
- dtype = torch.int32 if is_mps else torch.int64
904
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
905
- elif len(timesteps.shape) == 0:
906
- timesteps = timesteps[None].to(sample.device)
907
-
908
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
909
- timesteps = timesteps.expand(sample.shape[0])
910
-
911
- t_emb = self.time_proj(timesteps)
912
-
913
- # timesteps does not contain any weights and will always return f32 tensors
914
- # but time_embedding might actually be running in fp16. so we need to cast here.
915
- # there might be better ways to encapsulate this.
916
- t_emb = t_emb.to(dtype=sample.dtype)
917
-
918
- emb = self.time_embedding(t_emb, timestep_cond)
919
- aug_emb = None
920
-
921
- if self.class_embedding is not None:
922
- if class_labels is None:
923
- raise ValueError(
924
- "class_labels should be provided when num_class_embeds > 0"
925
- )
926
-
927
- if self.config.class_embed_type == "timestep":
928
- class_labels = self.time_proj(class_labels)
929
-
930
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
931
- emb = emb + class_emb
932
-
933
- if self.config.addition_embed_type is not None:
934
- if self.config.addition_embed_type == "text":
935
- aug_emb = self.add_embedding(encoder_hidden_states)
936
-
937
- elif self.config.addition_embed_type == "text_time":
938
- if "text_embeds" not in added_cond_kwargs:
939
- raise ValueError(
940
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
941
- )
942
- text_embeds = added_cond_kwargs.get("text_embeds")
943
- if "time_ids" not in added_cond_kwargs:
944
- raise ValueError(
945
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
946
- )
947
- time_ids = added_cond_kwargs.get("time_ids")
948
- time_embeds = self.add_time_proj(time_ids.flatten())
949
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
950
-
951
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
952
- add_embeds = add_embeds.to(emb.dtype)
953
- aug_emb = self.add_embedding(add_embeds)
954
-
955
- # Copyright by Qi Xin(2024/07/06)
956
- # inject control type info to time embedding to distinguish different control conditions
957
- control_type = added_cond_kwargs.get("control_type")
958
- control_embeds = self.control_type_proj(control_type.flatten())
959
- control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
960
- control_embeds = control_embeds.to(emb.dtype)
961
- control_emb = self.control_add_embedding(control_embeds)
962
- emb = emb + control_emb
963
- # ---------------------------------------------------------------------------------
964
-
965
- emb = emb + aug_emb if aug_emb is not None else emb
966
-
967
- # 2. pre-process
968
- sample = self.conv_in(sample)
969
- indices = torch.nonzero(control_type[0])
970
-
971
- # Copyright by Qi Xin(2024/07/06)
972
- # add single/multi conditons to input image.
973
- # Condition Transformer provides an easy and effective way to fuse different features naturally
974
- inputs = []
975
- condition_list = []
976
-
977
- for idx in range(indices.shape[0] + 1):
978
- if idx == indices.shape[0]:
979
- controlnet_cond = sample
980
- feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C
981
- else:
982
- controlnet_cond = self.controlnet_cond_embedding(
983
- controlnet_cond_list[indices[idx][0]]
984
- )
985
- feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C
986
- feat_seq = feat_seq + self.task_embedding[indices[idx][0]]
987
-
988
- inputs.append(feat_seq.unsqueeze(1))
989
- condition_list.append(controlnet_cond)
990
-
991
- x = torch.cat(inputs, dim=1) # NxLxC
992
- x = self.transformer_layes(x)
993
-
994
- controlnet_cond_fuser = sample * 0.0
995
- for idx in range(indices.shape[0]):
996
- alpha = self.spatial_ch_projs(x[:, idx])
997
- alpha = alpha.unsqueeze(-1).unsqueeze(-1)
998
- controlnet_cond_fuser += condition_list[idx] + alpha
999
-
1000
- sample = sample + controlnet_cond_fuser
1001
- # -------------------------------------------------------------------------------------------
1002
-
1003
- # 3. down
1004
- down_block_res_samples = (sample,)
1005
- for downsample_block in self.down_blocks:
1006
- if (
1007
- hasattr(downsample_block, "has_cross_attention")
1008
- and downsample_block.has_cross_attention
1009
- ):
1010
- sample, res_samples = downsample_block(
1011
- hidden_states=sample,
1012
- temb=emb,
1013
- encoder_hidden_states=encoder_hidden_states,
1014
- attention_mask=attention_mask,
1015
- cross_attention_kwargs=cross_attention_kwargs,
1016
- )
1017
- else:
1018
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
1019
-
1020
- down_block_res_samples += res_samples
1021
-
1022
- # 4. mid
1023
- if self.mid_block is not None:
1024
- sample = self.mid_block(
1025
- sample,
1026
- emb,
1027
- encoder_hidden_states=encoder_hidden_states,
1028
- attention_mask=attention_mask,
1029
- cross_attention_kwargs=cross_attention_kwargs,
1030
- )
1031
-
1032
- # 5. Control net blocks
1033
-
1034
- controlnet_down_block_res_samples = ()
1035
-
1036
- for down_block_res_sample, controlnet_block in zip(
1037
- down_block_res_samples, self.controlnet_down_blocks
1038
- ):
1039
- down_block_res_sample = controlnet_block(down_block_res_sample)
1040
- controlnet_down_block_res_samples = controlnet_down_block_res_samples + (
1041
- down_block_res_sample,
1042
- )
1043
-
1044
- down_block_res_samples = controlnet_down_block_res_samples
1045
-
1046
- mid_block_res_sample = self.controlnet_mid_block(sample)
1047
-
1048
- # 6. scaling
1049
- if guess_mode and not self.config.global_pool_conditions:
1050
- scales = torch.logspace(
1051
- -1, 0, len(down_block_res_samples) + 1, device=sample.device
1052
- ) # 0.1 to 1.0
1053
- scales = scales * conditioning_scale
1054
- down_block_res_samples = [
1055
- sample * scale for sample, scale in zip(down_block_res_samples, scales)
1056
- ]
1057
- mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
1058
- else:
1059
- down_block_res_samples = [
1060
- sample * conditioning_scale for sample in down_block_res_samples
1061
- ]
1062
- mid_block_res_sample = mid_block_res_sample * conditioning_scale
1063
-
1064
- if self.config.global_pool_conditions:
1065
- down_block_res_samples = [
1066
- torch.mean(sample, dim=(2, 3), keepdim=True)
1067
- for sample in down_block_res_samples
1068
- ]
1069
- mid_block_res_sample = torch.mean(
1070
- mid_block_res_sample, dim=(2, 3), keepdim=True
1071
- )
1072
-
1073
- if not return_dict:
1074
- return (down_block_res_samples, mid_block_res_sample)
1075
-
1076
- return ControlNetOutput(
1077
- down_block_res_samples=down_block_res_samples,
1078
- mid_block_res_sample=mid_block_res_sample,
1079
- )
1080
-
1081
-
1082
- def zero_module(module):
1083
- for p in module.parameters():
1084
- nn.init.zeros_(p)
1085
- return module
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pipeline_fill_sd_xl.py DELETED
@@ -1,559 +0,0 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from typing import List, Optional, Union
16
-
17
- import cv2
18
- import PIL.Image
19
- import torch
20
- import torch.nn.functional as F
21
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
22
- from diffusers.models import AutoencoderKL, UNet2DConditionModel
23
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
24
- from diffusers.schedulers import KarrasDiffusionSchedulers
25
- from diffusers.utils.torch_utils import randn_tensor
26
- from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
27
-
28
- from controlnet_union import ControlNetModel_Union
29
-
30
-
31
- def latents_to_rgb(latents):
32
- weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35))
33
-
34
- weights_tensor = torch.t(
35
- torch.tensor(weights, dtype=latents.dtype).to(latents.device)
36
- )
37
- biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(
38
- latents.device
39
- )
40
- rgb_tensor = torch.einsum(
41
- "...lxy,lr -> ...rxy", latents, weights_tensor
42
- ) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
43
- image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
44
- image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions
45
-
46
- denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21)
47
- blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0)
48
- final_image = PIL.Image.fromarray(blurred_image)
49
-
50
- width, height = final_image.size
51
- final_image = final_image.resize(
52
- (width * 8, height * 8), PIL.Image.Resampling.LANCZOS
53
- )
54
-
55
- return final_image
56
-
57
-
58
- def retrieve_timesteps(
59
- scheduler,
60
- num_inference_steps: Optional[int] = None,
61
- device: Optional[Union[str, torch.device]] = None,
62
- **kwargs,
63
- ):
64
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
65
- timesteps = scheduler.timesteps
66
-
67
- return timesteps, num_inference_steps
68
-
69
-
70
- class StableDiffusionXLFillPipeline(DiffusionPipeline, StableDiffusionMixin):
71
- model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
72
- _optional_components = [
73
- "tokenizer",
74
- "tokenizer_2",
75
- "text_encoder",
76
- "text_encoder_2",
77
- ]
78
-
79
- def __init__(
80
- self,
81
- vae: AutoencoderKL,
82
- text_encoder: CLIPTextModel,
83
- text_encoder_2: CLIPTextModelWithProjection,
84
- tokenizer: CLIPTokenizer,
85
- tokenizer_2: CLIPTokenizer,
86
- unet: UNet2DConditionModel,
87
- controlnet: ControlNetModel_Union,
88
- scheduler: KarrasDiffusionSchedulers,
89
- force_zeros_for_empty_prompt: bool = True,
90
- ):
91
- super().__init__()
92
-
93
- self.register_modules(
94
- vae=vae,
95
- text_encoder=text_encoder,
96
- text_encoder_2=text_encoder_2,
97
- tokenizer=tokenizer,
98
- tokenizer_2=tokenizer_2,
99
- unet=unet,
100
- controlnet=controlnet,
101
- scheduler=scheduler,
102
- )
103
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
104
- self.image_processor = VaeImageProcessor(
105
- vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
106
- )
107
- self.control_image_processor = VaeImageProcessor(
108
- vae_scale_factor=self.vae_scale_factor,
109
- do_convert_rgb=True,
110
- do_normalize=False,
111
- )
112
-
113
- self.register_to_config(
114
- force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
115
- )
116
-
117
- def encode_prompt(
118
- self,
119
- prompt: str,
120
- device: Optional[torch.device] = None,
121
- do_classifier_free_guidance: bool = True,
122
- ):
123
- device = device or self._execution_device
124
- prompt = [prompt] if isinstance(prompt, str) else prompt
125
-
126
- if prompt is not None:
127
- batch_size = len(prompt)
128
-
129
- # Define tokenizers and text encoders
130
- tokenizers = (
131
- [self.tokenizer, self.tokenizer_2]
132
- if self.tokenizer is not None
133
- else [self.tokenizer_2]
134
- )
135
- text_encoders = (
136
- [self.text_encoder, self.text_encoder_2]
137
- if self.text_encoder is not None
138
- else [self.text_encoder_2]
139
- )
140
-
141
- prompt_2 = prompt
142
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
143
-
144
- # textual inversion: process multi-vector tokens if necessary
145
- prompt_embeds_list = []
146
- prompts = [prompt, prompt_2]
147
- for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
148
- text_inputs = tokenizer(
149
- prompt,
150
- padding="max_length",
151
- max_length=tokenizer.model_max_length,
152
- truncation=True,
153
- return_tensors="pt",
154
- )
155
-
156
- text_input_ids = text_inputs.input_ids
157
-
158
- prompt_embeds = text_encoder(
159
- text_input_ids.to(device), output_hidden_states=True
160
- )
161
-
162
- # We are only ALWAYS interested in the pooled output of the final text encoder
163
- pooled_prompt_embeds = prompt_embeds[0]
164
- prompt_embeds = prompt_embeds.hidden_states[-2]
165
- prompt_embeds_list.append(prompt_embeds)
166
-
167
- prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
168
-
169
- # get unconditional embeddings for classifier free guidance
170
- zero_out_negative_prompt = True
171
- negative_prompt_embeds = None
172
- negative_pooled_prompt_embeds = None
173
-
174
- if do_classifier_free_guidance and zero_out_negative_prompt:
175
- negative_prompt_embeds = torch.zeros_like(prompt_embeds)
176
- negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
177
- elif do_classifier_free_guidance and negative_prompt_embeds is None:
178
- negative_prompt = ""
179
- negative_prompt_2 = negative_prompt
180
-
181
- # normalize str to list
182
- negative_prompt = (
183
- batch_size * [negative_prompt]
184
- if isinstance(negative_prompt, str)
185
- else negative_prompt
186
- )
187
- negative_prompt_2 = (
188
- batch_size * [negative_prompt_2]
189
- if isinstance(negative_prompt_2, str)
190
- else negative_prompt_2
191
- )
192
-
193
- uncond_tokens: List[str]
194
- if prompt is not None and type(prompt) is not type(negative_prompt):
195
- raise TypeError(
196
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
197
- f" {type(prompt)}."
198
- )
199
- elif batch_size != len(negative_prompt):
200
- raise ValueError(
201
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
202
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
203
- " the batch size of `prompt`."
204
- )
205
- else:
206
- uncond_tokens = [negative_prompt, negative_prompt_2]
207
-
208
- negative_prompt_embeds_list = []
209
- for negative_prompt, tokenizer, text_encoder in zip(
210
- uncond_tokens, tokenizers, text_encoders
211
- ):
212
- max_length = prompt_embeds.shape[1]
213
- uncond_input = tokenizer(
214
- negative_prompt,
215
- padding="max_length",
216
- max_length=max_length,
217
- truncation=True,
218
- return_tensors="pt",
219
- )
220
-
221
- negative_prompt_embeds = text_encoder(
222
- uncond_input.input_ids.to(device),
223
- output_hidden_states=True,
224
- )
225
- # We are only ALWAYS interested in the pooled output of the final text encoder
226
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
227
- negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
228
-
229
- negative_prompt_embeds_list.append(negative_prompt_embeds)
230
-
231
- negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
232
-
233
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
234
-
235
- bs_embed, seq_len, _ = prompt_embeds.shape
236
- # duplicate text embeddings for each generation per prompt, using mps friendly method
237
- prompt_embeds = prompt_embeds.repeat(1, 1, 1)
238
- prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1)
239
-
240
- if do_classifier_free_guidance:
241
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
242
- seq_len = negative_prompt_embeds.shape[1]
243
-
244
- if self.text_encoder_2 is not None:
245
- negative_prompt_embeds = negative_prompt_embeds.to(
246
- dtype=self.text_encoder_2.dtype, device=device
247
- )
248
- else:
249
- negative_prompt_embeds = negative_prompt_embeds.to(
250
- dtype=self.unet.dtype, device=device
251
- )
252
-
253
- negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1)
254
- negative_prompt_embeds = negative_prompt_embeds.view(
255
- batch_size * 1, seq_len, -1
256
- )
257
-
258
- pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
259
- if do_classifier_free_guidance:
260
- negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
261
- 1, 1
262
- ).view(bs_embed * 1, -1)
263
-
264
- return (
265
- prompt_embeds,
266
- negative_prompt_embeds,
267
- pooled_prompt_embeds,
268
- negative_pooled_prompt_embeds,
269
- )
270
-
271
- def check_inputs(
272
- self,
273
- prompt_embeds,
274
- negative_prompt_embeds,
275
- pooled_prompt_embeds,
276
- negative_pooled_prompt_embeds,
277
- image,
278
- controlnet_conditioning_scale=1.0,
279
- ):
280
- if prompt_embeds is None:
281
- raise ValueError(
282
- "Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined."
283
- )
284
-
285
- if negative_prompt_embeds is None:
286
- raise ValueError(
287
- "Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined."
288
- )
289
-
290
- if prompt_embeds.shape != negative_prompt_embeds.shape:
291
- raise ValueError(
292
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
293
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
294
- f" {negative_prompt_embeds.shape}."
295
- )
296
-
297
- if prompt_embeds is not None and pooled_prompt_embeds is None:
298
- raise ValueError(
299
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
300
- )
301
-
302
- if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
303
- raise ValueError(
304
- "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
305
- )
306
-
307
- # Check `image`
308
- is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
309
- self.controlnet, torch._dynamo.eval_frame.OptimizedModule
310
- )
311
- if (
312
- isinstance(self.controlnet, ControlNetModel_Union)
313
- or is_compiled
314
- and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
315
- ):
316
- if not isinstance(image, PIL.Image.Image):
317
- raise TypeError(
318
- f"image must be passed and has to be a PIL image, but is {type(image)}"
319
- )
320
-
321
- else:
322
- assert False
323
-
324
- # Check `controlnet_conditioning_scale`
325
- if (
326
- isinstance(self.controlnet, ControlNetModel_Union)
327
- or is_compiled
328
- and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
329
- ):
330
- if not isinstance(controlnet_conditioning_scale, float):
331
- raise TypeError(
332
- "For single controlnet: `controlnet_conditioning_scale` must be type `float`."
333
- )
334
- else:
335
- assert False
336
-
337
- def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
338
- image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)
339
-
340
- image_batch_size = image.shape[0]
341
-
342
- image = image.repeat_interleave(image_batch_size, dim=0)
343
- image = image.to(device=device, dtype=dtype)
344
-
345
- if do_classifier_free_guidance:
346
- image = torch.cat([image] * 2)
347
-
348
- return image
349
-
350
- def prepare_latents(
351
- self, batch_size, num_channels_latents, height, width, dtype, device
352
- ):
353
- shape = (
354
- batch_size,
355
- num_channels_latents,
356
- int(height) // self.vae_scale_factor,
357
- int(width) // self.vae_scale_factor,
358
- )
359
-
360
- latents = randn_tensor(shape, device=device, dtype=dtype)
361
-
362
- # scale the initial noise by the standard deviation required by the scheduler
363
- latents = latents * self.scheduler.init_noise_sigma
364
- return latents
365
-
366
- @property
367
- def guidance_scale(self):
368
- return self._guidance_scale
369
-
370
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
371
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
372
- # corresponds to doing no classifier free guidance.
373
- @property
374
- def do_classifier_free_guidance(self):
375
- return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
376
-
377
- @property
378
- def num_timesteps(self):
379
- return self._num_timesteps
380
-
381
- @torch.no_grad()
382
- def __call__(
383
- self,
384
- prompt_embeds: torch.Tensor,
385
- negative_prompt_embeds: torch.Tensor,
386
- pooled_prompt_embeds: torch.Tensor,
387
- negative_pooled_prompt_embeds: torch.Tensor,
388
- image: PipelineImageInput = None,
389
- num_inference_steps: int = 8,
390
- guidance_scale: float = 1.5,
391
- controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
392
- ):
393
- # 1. Check inputs. Raise error if not correct
394
- self.check_inputs(
395
- prompt_embeds,
396
- negative_prompt_embeds,
397
- pooled_prompt_embeds,
398
- negative_pooled_prompt_embeds,
399
- image,
400
- controlnet_conditioning_scale,
401
- )
402
-
403
- self._guidance_scale = guidance_scale
404
-
405
- # 2. Define call parameters
406
- batch_size = 1
407
- device = self._execution_device
408
-
409
- # 4. Prepare image
410
- if isinstance(self.controlnet, ControlNetModel_Union):
411
- image = self.prepare_image(
412
- image=image,
413
- device=device,
414
- dtype=self.controlnet.dtype,
415
- do_classifier_free_guidance=self.do_classifier_free_guidance,
416
- )
417
- height, width = image.shape[-2:]
418
- else:
419
- assert False
420
-
421
- # 5. Prepare timesteps
422
- timesteps, num_inference_steps = retrieve_timesteps(
423
- self.scheduler, num_inference_steps, device
424
- )
425
- self._num_timesteps = len(timesteps)
426
-
427
- # 6. Prepare latent variables
428
- num_channels_latents = self.unet.config.in_channels
429
- latents = self.prepare_latents(
430
- batch_size,
431
- num_channels_latents,
432
- height,
433
- width,
434
- prompt_embeds.dtype,
435
- device,
436
- )
437
-
438
- # 7 Prepare added time ids & embeddings
439
- add_text_embeds = pooled_prompt_embeds
440
-
441
- add_time_ids = negative_add_time_ids = torch.tensor(
442
- image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:]
443
- ).unsqueeze(0)
444
-
445
- if self.do_classifier_free_guidance:
446
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
447
- add_text_embeds = torch.cat(
448
- [negative_pooled_prompt_embeds, add_text_embeds], dim=0
449
- )
450
- add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
451
-
452
- prompt_embeds = prompt_embeds.to(device)
453
- add_text_embeds = add_text_embeds.to(device)
454
- add_time_ids = add_time_ids.to(device).repeat(batch_size, 1)
455
-
456
- controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
457
- union_control_type = (
458
- torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0])
459
- .to(device, dtype=prompt_embeds.dtype)
460
- .repeat(batch_size * 2, 1)
461
- )
462
-
463
- added_cond_kwargs = {
464
- "text_embeds": add_text_embeds,
465
- "time_ids": add_time_ids,
466
- "control_type": union_control_type,
467
- }
468
-
469
- controlnet_prompt_embeds = prompt_embeds
470
- controlnet_added_cond_kwargs = added_cond_kwargs
471
-
472
- # 8. Denoising loop
473
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
474
-
475
- with self.progress_bar(total=num_inference_steps) as progress_bar:
476
- for i, t in enumerate(timesteps):
477
- # expand the latents if we are doing classifier free guidance
478
- latent_model_input = (
479
- torch.cat([latents] * 2)
480
- if self.do_classifier_free_guidance
481
- else latents
482
- )
483
- latent_model_input = self.scheduler.scale_model_input(
484
- latent_model_input, t
485
- )
486
-
487
- # controlnet(s) inference
488
- control_model_input = latent_model_input
489
-
490
- down_block_res_samples, mid_block_res_sample = self.controlnet(
491
- control_model_input,
492
- t,
493
- encoder_hidden_states=controlnet_prompt_embeds,
494
- controlnet_cond_list=controlnet_image_list,
495
- conditioning_scale=controlnet_conditioning_scale,
496
- guess_mode=False,
497
- added_cond_kwargs=controlnet_added_cond_kwargs,
498
- return_dict=False,
499
- )
500
-
501
- # predict the noise residual
502
- noise_pred = self.unet(
503
- latent_model_input,
504
- t,
505
- encoder_hidden_states=prompt_embeds,
506
- timestep_cond=None,
507
- cross_attention_kwargs={},
508
- down_block_additional_residuals=down_block_res_samples,
509
- mid_block_additional_residual=mid_block_res_sample,
510
- added_cond_kwargs=added_cond_kwargs,
511
- return_dict=False,
512
- )[0]
513
-
514
- # perform guidance
515
- if self.do_classifier_free_guidance:
516
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
517
- noise_pred = noise_pred_uncond + guidance_scale * (
518
- noise_pred_text - noise_pred_uncond
519
- )
520
-
521
- # compute the previous noisy sample x_t -> x_t-1
522
- latents = self.scheduler.step(
523
- noise_pred, t, latents, return_dict=False
524
- )[0]
525
-
526
- if i == 2:
527
- prompt_embeds = prompt_embeds[-1:]
528
- add_text_embeds = add_text_embeds[-1:]
529
- add_time_ids = add_time_ids[-1:]
530
- union_control_type = union_control_type[-1:]
531
-
532
- added_cond_kwargs = {
533
- "text_embeds": add_text_embeds,
534
- "time_ids": add_time_ids,
535
- "control_type": union_control_type,
536
- }
537
-
538
- controlnet_prompt_embeds = prompt_embeds
539
- controlnet_added_cond_kwargs = added_cond_kwargs
540
-
541
- image = image[-1:]
542
- controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
543
-
544
- self._guidance_scale = 0.0
545
-
546
- if i == len(timesteps) - 1 or (
547
- (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
548
- ):
549
- progress_bar.update()
550
- yield latents_to_rgb(latents)
551
-
552
- latents = latents / self.vae.config.scaling_factor
553
- image = self.vae.decode(latents, return_dict=False)[0]
554
- image = self.image_processor.postprocess(image)[0]
555
-
556
- # Offload all models
557
- self.maybe_free_model_hooks()
558
-
559
- yield image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,10 +1,10 @@
1
  torch
2
  spaces
3
- gradio==4.42.0
4
- gradio-imageslider
5
- numpy==1.26.4
6
  transformers
7
  accelerate
8
- diffusers==0.32.2
9
- fastapi<0.113.0
 
10
  opencv-python
 
1
  torch
2
  spaces
3
+ gradio
4
+ numpy
 
5
  transformers
6
  accelerate
7
+ diffusers
8
+ peft
9
+ fastapi
10
  opencv-python