Spaces:
Running
on
Zero
Running
on
Zero
fix and update
Browse files- app.py +54 -42
- controlnet_union.py +0 -1085
- pipeline_fill_sd_xl.py +0 -559
- requirements.txt +5 -5
app.py
CHANGED
@@ -1,45 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
from diffusers import AutoencoderKL, TCDScheduler
|
5 |
-
from diffusers.models.model_loading_utils import load_state_dict
|
6 |
-
from gradio_imageslider import ImageSlider
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
-
from
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
MODELS = {
|
13 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
14 |
}
|
15 |
|
16 |
-
|
17 |
-
"
|
18 |
-
filename="config_promax.json",
|
19 |
)
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
controlnet_model = ControlNetModel_Union.from_config(config)
|
23 |
-
model_file = hf_hub_download(
|
24 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
25 |
-
filename="diffusion_pytorch_model_promax.safetensors",
|
26 |
-
)
|
27 |
-
state_dict = load_state_dict(model_file)
|
28 |
-
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
29 |
-
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
30 |
-
)
|
31 |
-
model.to(device="cuda", dtype=torch.float16)
|
32 |
-
|
33 |
-
vae = AutoencoderKL.from_pretrained(
|
34 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
35 |
-
).to("cuda")
|
36 |
-
|
37 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
38 |
"SG161222/RealVisXL_V5.0_Lightning",
|
39 |
torch_dtype=torch.float16,
|
40 |
vae=vae,
|
41 |
-
controlnet=
|
42 |
-
|
43 |
).to("cuda")
|
44 |
|
45 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
@@ -50,7 +58,7 @@ prompt = "high quality"
|
|
50 |
negative_prompt_embeds,
|
51 |
pooled_prompt_embeds,
|
52 |
negative_pooled_prompt_embeds,
|
53 |
-
) = pipe.encode_prompt(prompt, "cuda"
|
54 |
|
55 |
|
56 |
@spaces.GPU(duration=16)
|
@@ -63,14 +71,25 @@ def fill_image(image, model_selection):
|
|
63 |
cnet_image = source.copy()
|
64 |
cnet_image.paste(0, (0, 0), binary_mask)
|
65 |
|
66 |
-
|
67 |
prompt_embeds=prompt_embeds,
|
68 |
negative_prompt_embeds=negative_prompt_embeds,
|
69 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
70 |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
image = image.convert("RGBA")
|
76 |
cnet_image.paste(image, (0, 0), binary_mask)
|
@@ -82,19 +101,12 @@ def clear_result():
|
|
82 |
return gr.update(value=None)
|
83 |
|
84 |
|
85 |
-
css = """
|
86 |
-
.gradio-container {
|
87 |
-
width: 1024px !important;
|
88 |
-
}
|
89 |
-
"""
|
90 |
-
|
91 |
-
|
92 |
title = """<h1 align="center">Diffusers Image Fill</h1>
|
93 |
<div align="center">Draw the mask over the subject you want to erase or change.</div>
|
94 |
<div align="center">This space is a PoC made for the guide <a href='https://huggingface.co/blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div>
|
95 |
"""
|
96 |
|
97 |
-
with gr.Blocks(
|
98 |
gr.HTML(title)
|
99 |
|
100 |
run_button = gr.Button("Generate")
|
@@ -109,7 +121,7 @@ with gr.Blocks(css=css) as demo:
|
|
109 |
sources=["upload"],
|
110 |
)
|
111 |
|
112 |
-
result = ImageSlider(
|
113 |
interactive=False,
|
114 |
label="Generated Image",
|
115 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from diffusers import AutoencoderKL, ControlNetUnionModel, DiffusionPipeline, TCDScheduler
|
6 |
+
|
7 |
+
|
8 |
+
def callback_cfg_cutoff(pipeline, step_index, timestep, callback_kwargs):
|
9 |
+
if step_index == int(pipeline.num_timesteps * 0.2):
|
10 |
+
prompt_embeds = callback_kwargs["prompt_embeds"]
|
11 |
+
prompt_embeds = prompt_embeds[-1:]
|
12 |
+
|
13 |
+
add_text_embeds = callback_kwargs["add_text_embeds"]
|
14 |
+
add_text_embeds = add_text_embeds[-1:]
|
15 |
+
|
16 |
+
add_time_ids = callback_kwargs["add_time_ids"]
|
17 |
+
add_time_ids = add_time_ids[-1:]
|
18 |
+
|
19 |
+
control_image = callback_kwargs["control_image"]
|
20 |
+
control_image[0] = control_image[0][-1:]
|
21 |
+
|
22 |
+
control_type = callback_kwargs["control_type"]
|
23 |
+
control_type = control_type[-1:]
|
24 |
+
|
25 |
+
pipeline._guidance_scale = 0.0
|
26 |
+
callback_kwargs["prompt_embeds"] = prompt_embeds
|
27 |
+
callback_kwargs["add_text_embeds"] = add_text_embeds
|
28 |
+
callback_kwargs["add_time_ids"] = add_time_ids
|
29 |
+
callback_kwargs["control_image"] = control_image
|
30 |
+
callback_kwargs["control_type"] = control_type
|
31 |
+
|
32 |
+
return callback_kwargs
|
33 |
+
|
34 |
|
35 |
MODELS = {
|
36 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
37 |
}
|
38 |
|
39 |
+
controlnet_model = ControlNetUnionModel.from_pretrained(
|
40 |
+
"OzzyGT/controlnet-union-promax-sdxl-1.0", variant="fp16", torch_dtype=torch.float16
|
|
|
41 |
)
|
42 |
+
controlnet_model.to(device="cuda", dtype=torch.float16)
|
43 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
44 |
|
45 |
+
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
"SG161222/RealVisXL_V5.0_Lightning",
|
47 |
torch_dtype=torch.float16,
|
48 |
vae=vae,
|
49 |
+
controlnet=controlnet_model,
|
50 |
+
custom_pipeline="OzzyGT/custom_sdxl_cnet_union",
|
51 |
).to("cuda")
|
52 |
|
53 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
|
|
58 |
negative_prompt_embeds,
|
59 |
pooled_prompt_embeds,
|
60 |
negative_pooled_prompt_embeds,
|
61 |
+
) = pipe.encode_prompt(prompt, "cuda")
|
62 |
|
63 |
|
64 |
@spaces.GPU(duration=16)
|
|
|
71 |
cnet_image = source.copy()
|
72 |
cnet_image.paste(0, (0, 0), binary_mask)
|
73 |
|
74 |
+
image = pipe(
|
75 |
prompt_embeds=prompt_embeds,
|
76 |
negative_prompt_embeds=negative_prompt_embeds,
|
77 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
78 |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
79 |
+
control_image=[cnet_image],
|
80 |
+
controlnet_conditioning_scale=[1.0],
|
81 |
+
control_mode=[7],
|
82 |
+
num_inference_steps=8,
|
83 |
+
guidance_scale=1.5,
|
84 |
+
callback_on_step_end=callback_cfg_cutoff,
|
85 |
+
callback_on_step_end_tensor_inputs=[
|
86 |
+
"prompt_embeds",
|
87 |
+
"add_text_embeds",
|
88 |
+
"add_time_ids",
|
89 |
+
"control_image",
|
90 |
+
"control_type",
|
91 |
+
],
|
92 |
+
).images[0]
|
93 |
|
94 |
image = image.convert("RGBA")
|
95 |
cnet_image.paste(image, (0, 0), binary_mask)
|
|
|
101 |
return gr.update(value=None)
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
title = """<h1 align="center">Diffusers Image Fill</h1>
|
105 |
<div align="center">Draw the mask over the subject you want to erase or change.</div>
|
106 |
<div align="center">This space is a PoC made for the guide <a href='https://huggingface.co/blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div>
|
107 |
"""
|
108 |
|
109 |
+
with gr.Blocks() as demo:
|
110 |
gr.HTML(title)
|
111 |
|
112 |
run_button = gr.Button("Generate")
|
|
|
121 |
sources=["upload"],
|
122 |
)
|
123 |
|
124 |
+
result = gr.ImageSlider(
|
125 |
interactive=False,
|
126 |
label="Generated Image",
|
127 |
)
|
controlnet_union.py
DELETED
@@ -1,1085 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
from collections import OrderedDict
|
15 |
-
from dataclasses import dataclass
|
16 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
20 |
-
from diffusers.loaders import FromOriginalModelMixin
|
21 |
-
from diffusers.models.attention_processor import (
|
22 |
-
ADDED_KV_ATTENTION_PROCESSORS,
|
23 |
-
CROSS_ATTENTION_PROCESSORS,
|
24 |
-
AttentionProcessor,
|
25 |
-
AttnAddedKVProcessor,
|
26 |
-
AttnProcessor,
|
27 |
-
)
|
28 |
-
from diffusers.models.embeddings import (
|
29 |
-
TextImageProjection,
|
30 |
-
TextImageTimeEmbedding,
|
31 |
-
TextTimeEmbedding,
|
32 |
-
TimestepEmbedding,
|
33 |
-
Timesteps,
|
34 |
-
)
|
35 |
-
from diffusers.models.modeling_utils import ModelMixin
|
36 |
-
from diffusers.models.unets.unet_2d_blocks import (
|
37 |
-
CrossAttnDownBlock2D,
|
38 |
-
DownBlock2D,
|
39 |
-
UNetMidBlock2DCrossAttn,
|
40 |
-
get_down_block,
|
41 |
-
)
|
42 |
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
43 |
-
from diffusers.utils import BaseOutput, logging
|
44 |
-
from torch import nn
|
45 |
-
from torch.nn import functional as F
|
46 |
-
|
47 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
-
|
49 |
-
|
50 |
-
# Transformer Block
|
51 |
-
# Used to exchange info between different conditions and input image
|
52 |
-
# With reference to https://github.com/TencentARC/T2I-Adapter/blob/SD/ldm/modules/encoders/adapter.py#L147
|
53 |
-
class QuickGELU(nn.Module):
|
54 |
-
def forward(self, x: torch.Tensor):
|
55 |
-
return x * torch.sigmoid(1.702 * x)
|
56 |
-
|
57 |
-
|
58 |
-
class LayerNorm(nn.LayerNorm):
|
59 |
-
"""Subclass torch's LayerNorm to handle fp16."""
|
60 |
-
|
61 |
-
def forward(self, x: torch.Tensor):
|
62 |
-
orig_type = x.dtype
|
63 |
-
ret = super().forward(x)
|
64 |
-
return ret.type(orig_type)
|
65 |
-
|
66 |
-
|
67 |
-
class ResidualAttentionBlock(nn.Module):
|
68 |
-
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
69 |
-
super().__init__()
|
70 |
-
|
71 |
-
self.attn = nn.MultiheadAttention(d_model, n_head)
|
72 |
-
self.ln_1 = LayerNorm(d_model)
|
73 |
-
self.mlp = nn.Sequential(
|
74 |
-
OrderedDict(
|
75 |
-
[
|
76 |
-
("c_fc", nn.Linear(d_model, d_model * 4)),
|
77 |
-
("gelu", QuickGELU()),
|
78 |
-
("c_proj", nn.Linear(d_model * 4, d_model)),
|
79 |
-
]
|
80 |
-
)
|
81 |
-
)
|
82 |
-
self.ln_2 = LayerNorm(d_model)
|
83 |
-
self.attn_mask = attn_mask
|
84 |
-
|
85 |
-
def attention(self, x: torch.Tensor):
|
86 |
-
self.attn_mask = (
|
87 |
-
self.attn_mask.to(dtype=x.dtype, device=x.device)
|
88 |
-
if self.attn_mask is not None
|
89 |
-
else None
|
90 |
-
)
|
91 |
-
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
92 |
-
|
93 |
-
def forward(self, x: torch.Tensor):
|
94 |
-
x = x + self.attention(self.ln_1(x))
|
95 |
-
x = x + self.mlp(self.ln_2(x))
|
96 |
-
return x
|
97 |
-
|
98 |
-
|
99 |
-
# -----------------------------------------------------------------------------------------------------
|
100 |
-
|
101 |
-
|
102 |
-
@dataclass
|
103 |
-
class ControlNetOutput(BaseOutput):
|
104 |
-
"""
|
105 |
-
The output of [`ControlNetModel`].
|
106 |
-
|
107 |
-
Args:
|
108 |
-
down_block_res_samples (`tuple[torch.Tensor]`):
|
109 |
-
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
110 |
-
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
111 |
-
used to condition the original UNet's downsampling activations.
|
112 |
-
mid_down_block_re_sample (`torch.Tensor`):
|
113 |
-
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
114 |
-
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
115 |
-
Output can be used to condition the original UNet's middle block activation.
|
116 |
-
"""
|
117 |
-
|
118 |
-
down_block_res_samples: Tuple[torch.Tensor]
|
119 |
-
mid_block_res_sample: torch.Tensor
|
120 |
-
|
121 |
-
|
122 |
-
class ControlNetConditioningEmbedding(nn.Module):
|
123 |
-
"""
|
124 |
-
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
125 |
-
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
126 |
-
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
127 |
-
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
128 |
-
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
129 |
-
model) to encode image-space conditions ... into feature maps ..."
|
130 |
-
"""
|
131 |
-
|
132 |
-
# original setting is (16, 32, 96, 256)
|
133 |
-
def __init__(
|
134 |
-
self,
|
135 |
-
conditioning_embedding_channels: int,
|
136 |
-
conditioning_channels: int = 3,
|
137 |
-
block_out_channels: Tuple[int] = (48, 96, 192, 384),
|
138 |
-
):
|
139 |
-
super().__init__()
|
140 |
-
|
141 |
-
self.conv_in = nn.Conv2d(
|
142 |
-
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
143 |
-
)
|
144 |
-
|
145 |
-
self.blocks = nn.ModuleList([])
|
146 |
-
|
147 |
-
for i in range(len(block_out_channels) - 1):
|
148 |
-
channel_in = block_out_channels[i]
|
149 |
-
channel_out = block_out_channels[i + 1]
|
150 |
-
self.blocks.append(
|
151 |
-
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)
|
152 |
-
)
|
153 |
-
self.blocks.append(
|
154 |
-
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)
|
155 |
-
)
|
156 |
-
|
157 |
-
self.conv_out = zero_module(
|
158 |
-
nn.Conv2d(
|
159 |
-
block_out_channels[-1],
|
160 |
-
conditioning_embedding_channels,
|
161 |
-
kernel_size=3,
|
162 |
-
padding=1,
|
163 |
-
)
|
164 |
-
)
|
165 |
-
|
166 |
-
def forward(self, conditioning):
|
167 |
-
embedding = self.conv_in(conditioning)
|
168 |
-
embedding = F.silu(embedding)
|
169 |
-
|
170 |
-
for block in self.blocks:
|
171 |
-
embedding = block(embedding)
|
172 |
-
embedding = F.silu(embedding)
|
173 |
-
|
174 |
-
embedding = self.conv_out(embedding)
|
175 |
-
|
176 |
-
return embedding
|
177 |
-
|
178 |
-
|
179 |
-
class ControlNetModel_Union(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
180 |
-
"""
|
181 |
-
A ControlNet model.
|
182 |
-
|
183 |
-
Args:
|
184 |
-
in_channels (`int`, defaults to 4):
|
185 |
-
The number of channels in the input sample.
|
186 |
-
flip_sin_to_cos (`bool`, defaults to `True`):
|
187 |
-
Whether to flip the sin to cos in the time embedding.
|
188 |
-
freq_shift (`int`, defaults to 0):
|
189 |
-
The frequency shift to apply to the time embedding.
|
190 |
-
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
191 |
-
The tuple of downsample blocks to use.
|
192 |
-
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
193 |
-
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
194 |
-
The tuple of output channels for each block.
|
195 |
-
layers_per_block (`int`, defaults to 2):
|
196 |
-
The number of layers per block.
|
197 |
-
downsample_padding (`int`, defaults to 1):
|
198 |
-
The padding to use for the downsampling convolution.
|
199 |
-
mid_block_scale_factor (`float`, defaults to 1):
|
200 |
-
The scale factor to use for the mid block.
|
201 |
-
act_fn (`str`, defaults to "silu"):
|
202 |
-
The activation function to use.
|
203 |
-
norm_num_groups (`int`, *optional*, defaults to 32):
|
204 |
-
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
205 |
-
in post-processing.
|
206 |
-
norm_eps (`float`, defaults to 1e-5):
|
207 |
-
The epsilon to use for the normalization.
|
208 |
-
cross_attention_dim (`int`, defaults to 1280):
|
209 |
-
The dimension of the cross attention features.
|
210 |
-
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
211 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
212 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
213 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
214 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
215 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
216 |
-
dimension to `cross_attention_dim`.
|
217 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
218 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
219 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
220 |
-
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
221 |
-
The dimension of the attention heads.
|
222 |
-
use_linear_projection (`bool`, defaults to `False`):
|
223 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
224 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
225 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
226 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
227 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
228 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
229 |
-
num_class_embeds (`int`, *optional*, defaults to 0):
|
230 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
231 |
-
class conditioning with `class_embed_type` equal to `None`.
|
232 |
-
upcast_attention (`bool`, defaults to `False`):
|
233 |
-
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
234 |
-
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
235 |
-
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
236 |
-
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
237 |
-
`class_embed_type="projection"`.
|
238 |
-
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
239 |
-
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
240 |
-
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
241 |
-
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
242 |
-
global_pool_conditions (`bool`, defaults to `False`):
|
243 |
-
"""
|
244 |
-
|
245 |
-
_supports_gradient_checkpointing = True
|
246 |
-
|
247 |
-
@register_to_config
|
248 |
-
def __init__(
|
249 |
-
self,
|
250 |
-
in_channels: int = 4,
|
251 |
-
conditioning_channels: int = 3,
|
252 |
-
flip_sin_to_cos: bool = True,
|
253 |
-
freq_shift: int = 0,
|
254 |
-
down_block_types: Tuple[str] = (
|
255 |
-
"CrossAttnDownBlock2D",
|
256 |
-
"CrossAttnDownBlock2D",
|
257 |
-
"CrossAttnDownBlock2D",
|
258 |
-
"DownBlock2D",
|
259 |
-
),
|
260 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
261 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
262 |
-
layers_per_block: int = 2,
|
263 |
-
downsample_padding: int = 1,
|
264 |
-
mid_block_scale_factor: float = 1,
|
265 |
-
act_fn: str = "silu",
|
266 |
-
norm_num_groups: Optional[int] = 32,
|
267 |
-
norm_eps: float = 1e-5,
|
268 |
-
cross_attention_dim: int = 1280,
|
269 |
-
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
270 |
-
encoder_hid_dim: Optional[int] = None,
|
271 |
-
encoder_hid_dim_type: Optional[str] = None,
|
272 |
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
273 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
274 |
-
use_linear_projection: bool = False,
|
275 |
-
class_embed_type: Optional[str] = None,
|
276 |
-
addition_embed_type: Optional[str] = None,
|
277 |
-
addition_time_embed_dim: Optional[int] = None,
|
278 |
-
num_class_embeds: Optional[int] = None,
|
279 |
-
upcast_attention: bool = False,
|
280 |
-
resnet_time_scale_shift: str = "default",
|
281 |
-
projection_class_embeddings_input_dim: Optional[int] = None,
|
282 |
-
controlnet_conditioning_channel_order: str = "rgb",
|
283 |
-
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
284 |
-
global_pool_conditions: bool = False,
|
285 |
-
addition_embed_type_num_heads=64,
|
286 |
-
num_control_type=6,
|
287 |
-
):
|
288 |
-
super().__init__()
|
289 |
-
|
290 |
-
# If `num_attention_heads` is not defined (which is the case for most models)
|
291 |
-
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
292 |
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
293 |
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
294 |
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
295 |
-
# which is why we correct for the naming here.
|
296 |
-
num_attention_heads = num_attention_heads or attention_head_dim
|
297 |
-
|
298 |
-
# Check inputs
|
299 |
-
if len(block_out_channels) != len(down_block_types):
|
300 |
-
raise ValueError(
|
301 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
302 |
-
)
|
303 |
-
|
304 |
-
if not isinstance(only_cross_attention, bool) and len(
|
305 |
-
only_cross_attention
|
306 |
-
) != len(down_block_types):
|
307 |
-
raise ValueError(
|
308 |
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
309 |
-
)
|
310 |
-
|
311 |
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
312 |
-
down_block_types
|
313 |
-
):
|
314 |
-
raise ValueError(
|
315 |
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
316 |
-
)
|
317 |
-
|
318 |
-
if isinstance(transformer_layers_per_block, int):
|
319 |
-
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
320 |
-
down_block_types
|
321 |
-
)
|
322 |
-
|
323 |
-
# input
|
324 |
-
conv_in_kernel = 3
|
325 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
326 |
-
self.conv_in = nn.Conv2d(
|
327 |
-
in_channels,
|
328 |
-
block_out_channels[0],
|
329 |
-
kernel_size=conv_in_kernel,
|
330 |
-
padding=conv_in_padding,
|
331 |
-
)
|
332 |
-
|
333 |
-
# time
|
334 |
-
time_embed_dim = block_out_channels[0] * 4
|
335 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
336 |
-
timestep_input_dim = block_out_channels[0]
|
337 |
-
self.time_embedding = TimestepEmbedding(
|
338 |
-
timestep_input_dim,
|
339 |
-
time_embed_dim,
|
340 |
-
act_fn=act_fn,
|
341 |
-
)
|
342 |
-
|
343 |
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
344 |
-
encoder_hid_dim_type = "text_proj"
|
345 |
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
346 |
-
logger.info(
|
347 |
-
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
348 |
-
)
|
349 |
-
|
350 |
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
351 |
-
raise ValueError(
|
352 |
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
353 |
-
)
|
354 |
-
|
355 |
-
if encoder_hid_dim_type == "text_proj":
|
356 |
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
357 |
-
elif encoder_hid_dim_type == "text_image_proj":
|
358 |
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
359 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
360 |
-
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
361 |
-
self.encoder_hid_proj = TextImageProjection(
|
362 |
-
text_embed_dim=encoder_hid_dim,
|
363 |
-
image_embed_dim=cross_attention_dim,
|
364 |
-
cross_attention_dim=cross_attention_dim,
|
365 |
-
)
|
366 |
-
|
367 |
-
elif encoder_hid_dim_type is not None:
|
368 |
-
raise ValueError(
|
369 |
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
370 |
-
)
|
371 |
-
else:
|
372 |
-
self.encoder_hid_proj = None
|
373 |
-
|
374 |
-
# class embedding
|
375 |
-
if class_embed_type is None and num_class_embeds is not None:
|
376 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
377 |
-
elif class_embed_type == "timestep":
|
378 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
379 |
-
elif class_embed_type == "identity":
|
380 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
381 |
-
elif class_embed_type == "projection":
|
382 |
-
if projection_class_embeddings_input_dim is None:
|
383 |
-
raise ValueError(
|
384 |
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
385 |
-
)
|
386 |
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
387 |
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
388 |
-
# 2. it projects from an arbitrary input dimension.
|
389 |
-
#
|
390 |
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
391 |
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
392 |
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
393 |
-
self.class_embedding = TimestepEmbedding(
|
394 |
-
projection_class_embeddings_input_dim, time_embed_dim
|
395 |
-
)
|
396 |
-
else:
|
397 |
-
self.class_embedding = None
|
398 |
-
|
399 |
-
if addition_embed_type == "text":
|
400 |
-
if encoder_hid_dim is not None:
|
401 |
-
text_time_embedding_from_dim = encoder_hid_dim
|
402 |
-
else:
|
403 |
-
text_time_embedding_from_dim = cross_attention_dim
|
404 |
-
|
405 |
-
self.add_embedding = TextTimeEmbedding(
|
406 |
-
text_time_embedding_from_dim,
|
407 |
-
time_embed_dim,
|
408 |
-
num_heads=addition_embed_type_num_heads,
|
409 |
-
)
|
410 |
-
elif addition_embed_type == "text_image":
|
411 |
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
412 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
413 |
-
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
414 |
-
self.add_embedding = TextImageTimeEmbedding(
|
415 |
-
text_embed_dim=cross_attention_dim,
|
416 |
-
image_embed_dim=cross_attention_dim,
|
417 |
-
time_embed_dim=time_embed_dim,
|
418 |
-
)
|
419 |
-
elif addition_embed_type == "text_time":
|
420 |
-
self.add_time_proj = Timesteps(
|
421 |
-
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
422 |
-
)
|
423 |
-
self.add_embedding = TimestepEmbedding(
|
424 |
-
projection_class_embeddings_input_dim, time_embed_dim
|
425 |
-
)
|
426 |
-
|
427 |
-
elif addition_embed_type is not None:
|
428 |
-
raise ValueError(
|
429 |
-
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
430 |
-
)
|
431 |
-
|
432 |
-
# control net conditioning embedding
|
433 |
-
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
434 |
-
conditioning_embedding_channels=block_out_channels[0],
|
435 |
-
block_out_channels=conditioning_embedding_out_channels,
|
436 |
-
conditioning_channels=conditioning_channels,
|
437 |
-
)
|
438 |
-
|
439 |
-
# Copyright by Qi Xin(2024/07/06)
|
440 |
-
# Condition Transformer(fuse single/multi conditions with input image)
|
441 |
-
# The Condition Transformer augment the feature representation of conditions
|
442 |
-
# The overall design is somewhat like resnet. The output of Condition Transformer is used to predict a condition bias adding to the original condition feature.
|
443 |
-
# num_control_type = 6
|
444 |
-
num_trans_channel = 320
|
445 |
-
num_trans_head = 8
|
446 |
-
num_trans_layer = 1
|
447 |
-
num_proj_channel = 320
|
448 |
-
task_scale_factor = num_trans_channel**0.5
|
449 |
-
|
450 |
-
self.task_embedding = nn.Parameter(
|
451 |
-
task_scale_factor * torch.randn(num_control_type, num_trans_channel)
|
452 |
-
)
|
453 |
-
self.transformer_layes = nn.Sequential(
|
454 |
-
*[
|
455 |
-
ResidualAttentionBlock(num_trans_channel, num_trans_head)
|
456 |
-
for _ in range(num_trans_layer)
|
457 |
-
]
|
458 |
-
)
|
459 |
-
self.spatial_ch_projs = zero_module(
|
460 |
-
nn.Linear(num_trans_channel, num_proj_channel)
|
461 |
-
)
|
462 |
-
# -----------------------------------------------------------------------------------------------------
|
463 |
-
|
464 |
-
# Copyright by Qi Xin(2024/07/06)
|
465 |
-
# Control Encoder to distinguish different control conditions
|
466 |
-
# A simple but effective module, consists of an embedding layer and a linear layer, to inject the control info to time embedding.
|
467 |
-
self.control_type_proj = Timesteps(
|
468 |
-
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
469 |
-
)
|
470 |
-
self.control_add_embedding = TimestepEmbedding(
|
471 |
-
addition_time_embed_dim * num_control_type, time_embed_dim
|
472 |
-
)
|
473 |
-
# -----------------------------------------------------------------------------------------------------
|
474 |
-
|
475 |
-
self.down_blocks = nn.ModuleList([])
|
476 |
-
self.controlnet_down_blocks = nn.ModuleList([])
|
477 |
-
|
478 |
-
if isinstance(only_cross_attention, bool):
|
479 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
480 |
-
|
481 |
-
if isinstance(attention_head_dim, int):
|
482 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
483 |
-
|
484 |
-
if isinstance(num_attention_heads, int):
|
485 |
-
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
486 |
-
|
487 |
-
# down
|
488 |
-
output_channel = block_out_channels[0]
|
489 |
-
|
490 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
491 |
-
controlnet_block = zero_module(controlnet_block)
|
492 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
493 |
-
|
494 |
-
for i, down_block_type in enumerate(down_block_types):
|
495 |
-
input_channel = output_channel
|
496 |
-
output_channel = block_out_channels[i]
|
497 |
-
is_final_block = i == len(block_out_channels) - 1
|
498 |
-
|
499 |
-
down_block = get_down_block(
|
500 |
-
down_block_type,
|
501 |
-
num_layers=layers_per_block,
|
502 |
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
503 |
-
in_channels=input_channel,
|
504 |
-
out_channels=output_channel,
|
505 |
-
temb_channels=time_embed_dim,
|
506 |
-
add_downsample=not is_final_block,
|
507 |
-
resnet_eps=norm_eps,
|
508 |
-
resnet_act_fn=act_fn,
|
509 |
-
resnet_groups=norm_num_groups,
|
510 |
-
cross_attention_dim=cross_attention_dim,
|
511 |
-
num_attention_heads=num_attention_heads[i],
|
512 |
-
attention_head_dim=attention_head_dim[i]
|
513 |
-
if attention_head_dim[i] is not None
|
514 |
-
else output_channel,
|
515 |
-
downsample_padding=downsample_padding,
|
516 |
-
use_linear_projection=use_linear_projection,
|
517 |
-
only_cross_attention=only_cross_attention[i],
|
518 |
-
upcast_attention=upcast_attention,
|
519 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
520 |
-
)
|
521 |
-
self.down_blocks.append(down_block)
|
522 |
-
|
523 |
-
for _ in range(layers_per_block):
|
524 |
-
controlnet_block = nn.Conv2d(
|
525 |
-
output_channel, output_channel, kernel_size=1
|
526 |
-
)
|
527 |
-
controlnet_block = zero_module(controlnet_block)
|
528 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
529 |
-
|
530 |
-
if not is_final_block:
|
531 |
-
controlnet_block = nn.Conv2d(
|
532 |
-
output_channel, output_channel, kernel_size=1
|
533 |
-
)
|
534 |
-
controlnet_block = zero_module(controlnet_block)
|
535 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
536 |
-
|
537 |
-
# mid
|
538 |
-
mid_block_channel = block_out_channels[-1]
|
539 |
-
|
540 |
-
controlnet_block = nn.Conv2d(
|
541 |
-
mid_block_channel, mid_block_channel, kernel_size=1
|
542 |
-
)
|
543 |
-
controlnet_block = zero_module(controlnet_block)
|
544 |
-
self.controlnet_mid_block = controlnet_block
|
545 |
-
|
546 |
-
self.mid_block = UNetMidBlock2DCrossAttn(
|
547 |
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
548 |
-
in_channels=mid_block_channel,
|
549 |
-
temb_channels=time_embed_dim,
|
550 |
-
resnet_eps=norm_eps,
|
551 |
-
resnet_act_fn=act_fn,
|
552 |
-
output_scale_factor=mid_block_scale_factor,
|
553 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
554 |
-
cross_attention_dim=cross_attention_dim,
|
555 |
-
num_attention_heads=num_attention_heads[-1],
|
556 |
-
resnet_groups=norm_num_groups,
|
557 |
-
use_linear_projection=use_linear_projection,
|
558 |
-
upcast_attention=upcast_attention,
|
559 |
-
)
|
560 |
-
|
561 |
-
@classmethod
|
562 |
-
def from_unet(
|
563 |
-
cls,
|
564 |
-
unet: UNet2DConditionModel,
|
565 |
-
controlnet_conditioning_channel_order: str = "rgb",
|
566 |
-
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
567 |
-
load_weights_from_unet: bool = True,
|
568 |
-
):
|
569 |
-
r"""
|
570 |
-
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
571 |
-
|
572 |
-
Parameters:
|
573 |
-
unet (`UNet2DConditionModel`):
|
574 |
-
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
575 |
-
where applicable.
|
576 |
-
"""
|
577 |
-
transformer_layers_per_block = (
|
578 |
-
unet.config.transformer_layers_per_block
|
579 |
-
if "transformer_layers_per_block" in unet.config
|
580 |
-
else 1
|
581 |
-
)
|
582 |
-
encoder_hid_dim = (
|
583 |
-
unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
584 |
-
)
|
585 |
-
encoder_hid_dim_type = (
|
586 |
-
unet.config.encoder_hid_dim_type
|
587 |
-
if "encoder_hid_dim_type" in unet.config
|
588 |
-
else None
|
589 |
-
)
|
590 |
-
addition_embed_type = (
|
591 |
-
unet.config.addition_embed_type
|
592 |
-
if "addition_embed_type" in unet.config
|
593 |
-
else None
|
594 |
-
)
|
595 |
-
addition_time_embed_dim = (
|
596 |
-
unet.config.addition_time_embed_dim
|
597 |
-
if "addition_time_embed_dim" in unet.config
|
598 |
-
else None
|
599 |
-
)
|
600 |
-
|
601 |
-
controlnet = cls(
|
602 |
-
encoder_hid_dim=encoder_hid_dim,
|
603 |
-
encoder_hid_dim_type=encoder_hid_dim_type,
|
604 |
-
addition_embed_type=addition_embed_type,
|
605 |
-
addition_time_embed_dim=addition_time_embed_dim,
|
606 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
607 |
-
# transformer_layers_per_block=[1, 2, 5],
|
608 |
-
in_channels=unet.config.in_channels,
|
609 |
-
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
610 |
-
freq_shift=unet.config.freq_shift,
|
611 |
-
down_block_types=unet.config.down_block_types,
|
612 |
-
only_cross_attention=unet.config.only_cross_attention,
|
613 |
-
block_out_channels=unet.config.block_out_channels,
|
614 |
-
layers_per_block=unet.config.layers_per_block,
|
615 |
-
downsample_padding=unet.config.downsample_padding,
|
616 |
-
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
617 |
-
act_fn=unet.config.act_fn,
|
618 |
-
norm_num_groups=unet.config.norm_num_groups,
|
619 |
-
norm_eps=unet.config.norm_eps,
|
620 |
-
cross_attention_dim=unet.config.cross_attention_dim,
|
621 |
-
attention_head_dim=unet.config.attention_head_dim,
|
622 |
-
num_attention_heads=unet.config.num_attention_heads,
|
623 |
-
use_linear_projection=unet.config.use_linear_projection,
|
624 |
-
class_embed_type=unet.config.class_embed_type,
|
625 |
-
num_class_embeds=unet.config.num_class_embeds,
|
626 |
-
upcast_attention=unet.config.upcast_attention,
|
627 |
-
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
628 |
-
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
629 |
-
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
630 |
-
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
631 |
-
)
|
632 |
-
|
633 |
-
if load_weights_from_unet:
|
634 |
-
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
635 |
-
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
636 |
-
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
637 |
-
|
638 |
-
if controlnet.class_embedding:
|
639 |
-
controlnet.class_embedding.load_state_dict(
|
640 |
-
unet.class_embedding.state_dict()
|
641 |
-
)
|
642 |
-
|
643 |
-
controlnet.down_blocks.load_state_dict(
|
644 |
-
unet.down_blocks.state_dict(), strict=False
|
645 |
-
)
|
646 |
-
controlnet.mid_block.load_state_dict(
|
647 |
-
unet.mid_block.state_dict(), strict=False
|
648 |
-
)
|
649 |
-
|
650 |
-
return controlnet
|
651 |
-
|
652 |
-
@property
|
653 |
-
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
654 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
655 |
-
r"""
|
656 |
-
Returns:
|
657 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
658 |
-
indexed by its weight name.
|
659 |
-
"""
|
660 |
-
# set recursively
|
661 |
-
processors = {}
|
662 |
-
|
663 |
-
def fn_recursive_add_processors(
|
664 |
-
name: str,
|
665 |
-
module: torch.nn.Module,
|
666 |
-
processors: Dict[str, AttentionProcessor],
|
667 |
-
):
|
668 |
-
if hasattr(module, "get_processor"):
|
669 |
-
processors[f"{name}.processor"] = module.get_processor(
|
670 |
-
return_deprecated_lora=True
|
671 |
-
)
|
672 |
-
|
673 |
-
for sub_name, child in module.named_children():
|
674 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
675 |
-
|
676 |
-
return processors
|
677 |
-
|
678 |
-
for name, module in self.named_children():
|
679 |
-
fn_recursive_add_processors(name, module, processors)
|
680 |
-
|
681 |
-
return processors
|
682 |
-
|
683 |
-
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
684 |
-
def set_attn_processor(
|
685 |
-
self,
|
686 |
-
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
687 |
-
_remove_lora=False,
|
688 |
-
):
|
689 |
-
r"""
|
690 |
-
Sets the attention processor to use to compute attention.
|
691 |
-
|
692 |
-
Parameters:
|
693 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
694 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
695 |
-
for **all** `Attention` layers.
|
696 |
-
|
697 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
698 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
699 |
-
|
700 |
-
"""
|
701 |
-
count = len(self.attn_processors.keys())
|
702 |
-
|
703 |
-
if isinstance(processor, dict) and len(processor) != count:
|
704 |
-
raise ValueError(
|
705 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
706 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
707 |
-
)
|
708 |
-
|
709 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
710 |
-
if hasattr(module, "set_processor"):
|
711 |
-
if not isinstance(processor, dict):
|
712 |
-
module.set_processor(processor, _remove_lora=_remove_lora)
|
713 |
-
else:
|
714 |
-
module.set_processor(
|
715 |
-
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
716 |
-
)
|
717 |
-
|
718 |
-
for sub_name, child in module.named_children():
|
719 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
720 |
-
|
721 |
-
for name, module in self.named_children():
|
722 |
-
fn_recursive_attn_processor(name, module, processor)
|
723 |
-
|
724 |
-
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
725 |
-
def set_default_attn_processor(self):
|
726 |
-
"""
|
727 |
-
Disables custom attention processors and sets the default attention implementation.
|
728 |
-
"""
|
729 |
-
if all(
|
730 |
-
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
731 |
-
for proc in self.attn_processors.values()
|
732 |
-
):
|
733 |
-
processor = AttnAddedKVProcessor()
|
734 |
-
elif all(
|
735 |
-
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
736 |
-
for proc in self.attn_processors.values()
|
737 |
-
):
|
738 |
-
processor = AttnProcessor()
|
739 |
-
else:
|
740 |
-
raise ValueError(
|
741 |
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
742 |
-
)
|
743 |
-
|
744 |
-
self.set_attn_processor(processor, _remove_lora=True)
|
745 |
-
|
746 |
-
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
747 |
-
def set_attention_slice(self, slice_size):
|
748 |
-
r"""
|
749 |
-
Enable sliced attention computation.
|
750 |
-
|
751 |
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
752 |
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
753 |
-
|
754 |
-
Args:
|
755 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
756 |
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
757 |
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
758 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
759 |
-
must be a multiple of `slice_size`.
|
760 |
-
"""
|
761 |
-
sliceable_head_dims = []
|
762 |
-
|
763 |
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
764 |
-
if hasattr(module, "set_attention_slice"):
|
765 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
766 |
-
|
767 |
-
for child in module.children():
|
768 |
-
fn_recursive_retrieve_sliceable_dims(child)
|
769 |
-
|
770 |
-
# retrieve number of attention layers
|
771 |
-
for module in self.children():
|
772 |
-
fn_recursive_retrieve_sliceable_dims(module)
|
773 |
-
|
774 |
-
num_sliceable_layers = len(sliceable_head_dims)
|
775 |
-
|
776 |
-
if slice_size == "auto":
|
777 |
-
# half the attention head size is usually a good trade-off between
|
778 |
-
# speed and memory
|
779 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
780 |
-
elif slice_size == "max":
|
781 |
-
# make smallest slice possible
|
782 |
-
slice_size = num_sliceable_layers * [1]
|
783 |
-
|
784 |
-
slice_size = (
|
785 |
-
num_sliceable_layers * [slice_size]
|
786 |
-
if not isinstance(slice_size, list)
|
787 |
-
else slice_size
|
788 |
-
)
|
789 |
-
|
790 |
-
if len(slice_size) != len(sliceable_head_dims):
|
791 |
-
raise ValueError(
|
792 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
793 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
794 |
-
)
|
795 |
-
|
796 |
-
for i in range(len(slice_size)):
|
797 |
-
size = slice_size[i]
|
798 |
-
dim = sliceable_head_dims[i]
|
799 |
-
if size is not None and size > dim:
|
800 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
801 |
-
|
802 |
-
# Recursively walk through all the children.
|
803 |
-
# Any children which exposes the set_attention_slice method
|
804 |
-
# gets the message
|
805 |
-
def fn_recursive_set_attention_slice(
|
806 |
-
module: torch.nn.Module, slice_size: List[int]
|
807 |
-
):
|
808 |
-
if hasattr(module, "set_attention_slice"):
|
809 |
-
module.set_attention_slice(slice_size.pop())
|
810 |
-
|
811 |
-
for child in module.children():
|
812 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
813 |
-
|
814 |
-
reversed_slice_size = list(reversed(slice_size))
|
815 |
-
for module in self.children():
|
816 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
817 |
-
|
818 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
819 |
-
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
820 |
-
module.gradient_checkpointing = value
|
821 |
-
|
822 |
-
def forward(
|
823 |
-
self,
|
824 |
-
sample: torch.FloatTensor,
|
825 |
-
timestep: Union[torch.Tensor, float, int],
|
826 |
-
encoder_hidden_states: torch.Tensor,
|
827 |
-
controlnet_cond_list: torch.FloatTensor,
|
828 |
-
conditioning_scale: float = 1.0,
|
829 |
-
class_labels: Optional[torch.Tensor] = None,
|
830 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
831 |
-
attention_mask: Optional[torch.Tensor] = None,
|
832 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
833 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
834 |
-
guess_mode: bool = False,
|
835 |
-
return_dict: bool = True,
|
836 |
-
) -> Union[ControlNetOutput, Tuple]:
|
837 |
-
"""
|
838 |
-
The [`ControlNetModel`] forward method.
|
839 |
-
|
840 |
-
Args:
|
841 |
-
sample (`torch.FloatTensor`):
|
842 |
-
The noisy input tensor.
|
843 |
-
timestep (`Union[torch.Tensor, float, int]`):
|
844 |
-
The number of timesteps to denoise an input.
|
845 |
-
encoder_hidden_states (`torch.Tensor`):
|
846 |
-
The encoder hidden states.
|
847 |
-
controlnet_cond (`torch.FloatTensor`):
|
848 |
-
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
849 |
-
conditioning_scale (`float`, defaults to `1.0`):
|
850 |
-
The scale factor for ControlNet outputs.
|
851 |
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
852 |
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
853 |
-
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
854 |
-
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
855 |
-
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
856 |
-
embeddings.
|
857 |
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
858 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
859 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
860 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
861 |
-
added_cond_kwargs (`dict`):
|
862 |
-
Additional conditions for the Stable Diffusion XL UNet.
|
863 |
-
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
864 |
-
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
865 |
-
guess_mode (`bool`, defaults to `False`):
|
866 |
-
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
867 |
-
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
868 |
-
return_dict (`bool`, defaults to `True`):
|
869 |
-
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
870 |
-
|
871 |
-
Returns:
|
872 |
-
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
873 |
-
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
874 |
-
returned where the first element is the sample tensor.
|
875 |
-
"""
|
876 |
-
# check channel order
|
877 |
-
channel_order = self.config.controlnet_conditioning_channel_order
|
878 |
-
|
879 |
-
if channel_order == "rgb":
|
880 |
-
# in rgb order by default
|
881 |
-
...
|
882 |
-
# elif channel_order == "bgr":
|
883 |
-
# controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
884 |
-
else:
|
885 |
-
raise ValueError(
|
886 |
-
f"unknown `controlnet_conditioning_channel_order`: {channel_order}"
|
887 |
-
)
|
888 |
-
|
889 |
-
# prepare attention_mask
|
890 |
-
if attention_mask is not None:
|
891 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
892 |
-
attention_mask = attention_mask.unsqueeze(1)
|
893 |
-
|
894 |
-
# 1. time
|
895 |
-
timesteps = timestep
|
896 |
-
if not torch.is_tensor(timesteps):
|
897 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
898 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
899 |
-
is_mps = sample.device.type == "mps"
|
900 |
-
if isinstance(timestep, float):
|
901 |
-
dtype = torch.float32 if is_mps else torch.float64
|
902 |
-
else:
|
903 |
-
dtype = torch.int32 if is_mps else torch.int64
|
904 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
905 |
-
elif len(timesteps.shape) == 0:
|
906 |
-
timesteps = timesteps[None].to(sample.device)
|
907 |
-
|
908 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
909 |
-
timesteps = timesteps.expand(sample.shape[0])
|
910 |
-
|
911 |
-
t_emb = self.time_proj(timesteps)
|
912 |
-
|
913 |
-
# timesteps does not contain any weights and will always return f32 tensors
|
914 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
915 |
-
# there might be better ways to encapsulate this.
|
916 |
-
t_emb = t_emb.to(dtype=sample.dtype)
|
917 |
-
|
918 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
919 |
-
aug_emb = None
|
920 |
-
|
921 |
-
if self.class_embedding is not None:
|
922 |
-
if class_labels is None:
|
923 |
-
raise ValueError(
|
924 |
-
"class_labels should be provided when num_class_embeds > 0"
|
925 |
-
)
|
926 |
-
|
927 |
-
if self.config.class_embed_type == "timestep":
|
928 |
-
class_labels = self.time_proj(class_labels)
|
929 |
-
|
930 |
-
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
931 |
-
emb = emb + class_emb
|
932 |
-
|
933 |
-
if self.config.addition_embed_type is not None:
|
934 |
-
if self.config.addition_embed_type == "text":
|
935 |
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
936 |
-
|
937 |
-
elif self.config.addition_embed_type == "text_time":
|
938 |
-
if "text_embeds" not in added_cond_kwargs:
|
939 |
-
raise ValueError(
|
940 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
941 |
-
)
|
942 |
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
943 |
-
if "time_ids" not in added_cond_kwargs:
|
944 |
-
raise ValueError(
|
945 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
946 |
-
)
|
947 |
-
time_ids = added_cond_kwargs.get("time_ids")
|
948 |
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
949 |
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
950 |
-
|
951 |
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
952 |
-
add_embeds = add_embeds.to(emb.dtype)
|
953 |
-
aug_emb = self.add_embedding(add_embeds)
|
954 |
-
|
955 |
-
# Copyright by Qi Xin(2024/07/06)
|
956 |
-
# inject control type info to time embedding to distinguish different control conditions
|
957 |
-
control_type = added_cond_kwargs.get("control_type")
|
958 |
-
control_embeds = self.control_type_proj(control_type.flatten())
|
959 |
-
control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
|
960 |
-
control_embeds = control_embeds.to(emb.dtype)
|
961 |
-
control_emb = self.control_add_embedding(control_embeds)
|
962 |
-
emb = emb + control_emb
|
963 |
-
# ---------------------------------------------------------------------------------
|
964 |
-
|
965 |
-
emb = emb + aug_emb if aug_emb is not None else emb
|
966 |
-
|
967 |
-
# 2. pre-process
|
968 |
-
sample = self.conv_in(sample)
|
969 |
-
indices = torch.nonzero(control_type[0])
|
970 |
-
|
971 |
-
# Copyright by Qi Xin(2024/07/06)
|
972 |
-
# add single/multi conditons to input image.
|
973 |
-
# Condition Transformer provides an easy and effective way to fuse different features naturally
|
974 |
-
inputs = []
|
975 |
-
condition_list = []
|
976 |
-
|
977 |
-
for idx in range(indices.shape[0] + 1):
|
978 |
-
if idx == indices.shape[0]:
|
979 |
-
controlnet_cond = sample
|
980 |
-
feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C
|
981 |
-
else:
|
982 |
-
controlnet_cond = self.controlnet_cond_embedding(
|
983 |
-
controlnet_cond_list[indices[idx][0]]
|
984 |
-
)
|
985 |
-
feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C
|
986 |
-
feat_seq = feat_seq + self.task_embedding[indices[idx][0]]
|
987 |
-
|
988 |
-
inputs.append(feat_seq.unsqueeze(1))
|
989 |
-
condition_list.append(controlnet_cond)
|
990 |
-
|
991 |
-
x = torch.cat(inputs, dim=1) # NxLxC
|
992 |
-
x = self.transformer_layes(x)
|
993 |
-
|
994 |
-
controlnet_cond_fuser = sample * 0.0
|
995 |
-
for idx in range(indices.shape[0]):
|
996 |
-
alpha = self.spatial_ch_projs(x[:, idx])
|
997 |
-
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
998 |
-
controlnet_cond_fuser += condition_list[idx] + alpha
|
999 |
-
|
1000 |
-
sample = sample + controlnet_cond_fuser
|
1001 |
-
# -------------------------------------------------------------------------------------------
|
1002 |
-
|
1003 |
-
# 3. down
|
1004 |
-
down_block_res_samples = (sample,)
|
1005 |
-
for downsample_block in self.down_blocks:
|
1006 |
-
if (
|
1007 |
-
hasattr(downsample_block, "has_cross_attention")
|
1008 |
-
and downsample_block.has_cross_attention
|
1009 |
-
):
|
1010 |
-
sample, res_samples = downsample_block(
|
1011 |
-
hidden_states=sample,
|
1012 |
-
temb=emb,
|
1013 |
-
encoder_hidden_states=encoder_hidden_states,
|
1014 |
-
attention_mask=attention_mask,
|
1015 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1016 |
-
)
|
1017 |
-
else:
|
1018 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1019 |
-
|
1020 |
-
down_block_res_samples += res_samples
|
1021 |
-
|
1022 |
-
# 4. mid
|
1023 |
-
if self.mid_block is not None:
|
1024 |
-
sample = self.mid_block(
|
1025 |
-
sample,
|
1026 |
-
emb,
|
1027 |
-
encoder_hidden_states=encoder_hidden_states,
|
1028 |
-
attention_mask=attention_mask,
|
1029 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1030 |
-
)
|
1031 |
-
|
1032 |
-
# 5. Control net blocks
|
1033 |
-
|
1034 |
-
controlnet_down_block_res_samples = ()
|
1035 |
-
|
1036 |
-
for down_block_res_sample, controlnet_block in zip(
|
1037 |
-
down_block_res_samples, self.controlnet_down_blocks
|
1038 |
-
):
|
1039 |
-
down_block_res_sample = controlnet_block(down_block_res_sample)
|
1040 |
-
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (
|
1041 |
-
down_block_res_sample,
|
1042 |
-
)
|
1043 |
-
|
1044 |
-
down_block_res_samples = controlnet_down_block_res_samples
|
1045 |
-
|
1046 |
-
mid_block_res_sample = self.controlnet_mid_block(sample)
|
1047 |
-
|
1048 |
-
# 6. scaling
|
1049 |
-
if guess_mode and not self.config.global_pool_conditions:
|
1050 |
-
scales = torch.logspace(
|
1051 |
-
-1, 0, len(down_block_res_samples) + 1, device=sample.device
|
1052 |
-
) # 0.1 to 1.0
|
1053 |
-
scales = scales * conditioning_scale
|
1054 |
-
down_block_res_samples = [
|
1055 |
-
sample * scale for sample, scale in zip(down_block_res_samples, scales)
|
1056 |
-
]
|
1057 |
-
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
1058 |
-
else:
|
1059 |
-
down_block_res_samples = [
|
1060 |
-
sample * conditioning_scale for sample in down_block_res_samples
|
1061 |
-
]
|
1062 |
-
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
1063 |
-
|
1064 |
-
if self.config.global_pool_conditions:
|
1065 |
-
down_block_res_samples = [
|
1066 |
-
torch.mean(sample, dim=(2, 3), keepdim=True)
|
1067 |
-
for sample in down_block_res_samples
|
1068 |
-
]
|
1069 |
-
mid_block_res_sample = torch.mean(
|
1070 |
-
mid_block_res_sample, dim=(2, 3), keepdim=True
|
1071 |
-
)
|
1072 |
-
|
1073 |
-
if not return_dict:
|
1074 |
-
return (down_block_res_samples, mid_block_res_sample)
|
1075 |
-
|
1076 |
-
return ControlNetOutput(
|
1077 |
-
down_block_res_samples=down_block_res_samples,
|
1078 |
-
mid_block_res_sample=mid_block_res_sample,
|
1079 |
-
)
|
1080 |
-
|
1081 |
-
|
1082 |
-
def zero_module(module):
|
1083 |
-
for p in module.parameters():
|
1084 |
-
nn.init.zeros_(p)
|
1085 |
-
return module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline_fill_sd_xl.py
DELETED
@@ -1,559 +0,0 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
from typing import List, Optional, Union
|
16 |
-
|
17 |
-
import cv2
|
18 |
-
import PIL.Image
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
22 |
-
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
23 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
24 |
-
from diffusers.schedulers import KarrasDiffusionSchedulers
|
25 |
-
from diffusers.utils.torch_utils import randn_tensor
|
26 |
-
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
27 |
-
|
28 |
-
from controlnet_union import ControlNetModel_Union
|
29 |
-
|
30 |
-
|
31 |
-
def latents_to_rgb(latents):
|
32 |
-
weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35))
|
33 |
-
|
34 |
-
weights_tensor = torch.t(
|
35 |
-
torch.tensor(weights, dtype=latents.dtype).to(latents.device)
|
36 |
-
)
|
37 |
-
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(
|
38 |
-
latents.device
|
39 |
-
)
|
40 |
-
rgb_tensor = torch.einsum(
|
41 |
-
"...lxy,lr -> ...rxy", latents, weights_tensor
|
42 |
-
) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
|
43 |
-
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
|
44 |
-
image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions
|
45 |
-
|
46 |
-
denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21)
|
47 |
-
blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0)
|
48 |
-
final_image = PIL.Image.fromarray(blurred_image)
|
49 |
-
|
50 |
-
width, height = final_image.size
|
51 |
-
final_image = final_image.resize(
|
52 |
-
(width * 8, height * 8), PIL.Image.Resampling.LANCZOS
|
53 |
-
)
|
54 |
-
|
55 |
-
return final_image
|
56 |
-
|
57 |
-
|
58 |
-
def retrieve_timesteps(
|
59 |
-
scheduler,
|
60 |
-
num_inference_steps: Optional[int] = None,
|
61 |
-
device: Optional[Union[str, torch.device]] = None,
|
62 |
-
**kwargs,
|
63 |
-
):
|
64 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
65 |
-
timesteps = scheduler.timesteps
|
66 |
-
|
67 |
-
return timesteps, num_inference_steps
|
68 |
-
|
69 |
-
|
70 |
-
class StableDiffusionXLFillPipeline(DiffusionPipeline, StableDiffusionMixin):
|
71 |
-
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
72 |
-
_optional_components = [
|
73 |
-
"tokenizer",
|
74 |
-
"tokenizer_2",
|
75 |
-
"text_encoder",
|
76 |
-
"text_encoder_2",
|
77 |
-
]
|
78 |
-
|
79 |
-
def __init__(
|
80 |
-
self,
|
81 |
-
vae: AutoencoderKL,
|
82 |
-
text_encoder: CLIPTextModel,
|
83 |
-
text_encoder_2: CLIPTextModelWithProjection,
|
84 |
-
tokenizer: CLIPTokenizer,
|
85 |
-
tokenizer_2: CLIPTokenizer,
|
86 |
-
unet: UNet2DConditionModel,
|
87 |
-
controlnet: ControlNetModel_Union,
|
88 |
-
scheduler: KarrasDiffusionSchedulers,
|
89 |
-
force_zeros_for_empty_prompt: bool = True,
|
90 |
-
):
|
91 |
-
super().__init__()
|
92 |
-
|
93 |
-
self.register_modules(
|
94 |
-
vae=vae,
|
95 |
-
text_encoder=text_encoder,
|
96 |
-
text_encoder_2=text_encoder_2,
|
97 |
-
tokenizer=tokenizer,
|
98 |
-
tokenizer_2=tokenizer_2,
|
99 |
-
unet=unet,
|
100 |
-
controlnet=controlnet,
|
101 |
-
scheduler=scheduler,
|
102 |
-
)
|
103 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
104 |
-
self.image_processor = VaeImageProcessor(
|
105 |
-
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
106 |
-
)
|
107 |
-
self.control_image_processor = VaeImageProcessor(
|
108 |
-
vae_scale_factor=self.vae_scale_factor,
|
109 |
-
do_convert_rgb=True,
|
110 |
-
do_normalize=False,
|
111 |
-
)
|
112 |
-
|
113 |
-
self.register_to_config(
|
114 |
-
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
|
115 |
-
)
|
116 |
-
|
117 |
-
def encode_prompt(
|
118 |
-
self,
|
119 |
-
prompt: str,
|
120 |
-
device: Optional[torch.device] = None,
|
121 |
-
do_classifier_free_guidance: bool = True,
|
122 |
-
):
|
123 |
-
device = device or self._execution_device
|
124 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
125 |
-
|
126 |
-
if prompt is not None:
|
127 |
-
batch_size = len(prompt)
|
128 |
-
|
129 |
-
# Define tokenizers and text encoders
|
130 |
-
tokenizers = (
|
131 |
-
[self.tokenizer, self.tokenizer_2]
|
132 |
-
if self.tokenizer is not None
|
133 |
-
else [self.tokenizer_2]
|
134 |
-
)
|
135 |
-
text_encoders = (
|
136 |
-
[self.text_encoder, self.text_encoder_2]
|
137 |
-
if self.text_encoder is not None
|
138 |
-
else [self.text_encoder_2]
|
139 |
-
)
|
140 |
-
|
141 |
-
prompt_2 = prompt
|
142 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
143 |
-
|
144 |
-
# textual inversion: process multi-vector tokens if necessary
|
145 |
-
prompt_embeds_list = []
|
146 |
-
prompts = [prompt, prompt_2]
|
147 |
-
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
148 |
-
text_inputs = tokenizer(
|
149 |
-
prompt,
|
150 |
-
padding="max_length",
|
151 |
-
max_length=tokenizer.model_max_length,
|
152 |
-
truncation=True,
|
153 |
-
return_tensors="pt",
|
154 |
-
)
|
155 |
-
|
156 |
-
text_input_ids = text_inputs.input_ids
|
157 |
-
|
158 |
-
prompt_embeds = text_encoder(
|
159 |
-
text_input_ids.to(device), output_hidden_states=True
|
160 |
-
)
|
161 |
-
|
162 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
163 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
164 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
165 |
-
prompt_embeds_list.append(prompt_embeds)
|
166 |
-
|
167 |
-
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
168 |
-
|
169 |
-
# get unconditional embeddings for classifier free guidance
|
170 |
-
zero_out_negative_prompt = True
|
171 |
-
negative_prompt_embeds = None
|
172 |
-
negative_pooled_prompt_embeds = None
|
173 |
-
|
174 |
-
if do_classifier_free_guidance and zero_out_negative_prompt:
|
175 |
-
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
176 |
-
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
177 |
-
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
178 |
-
negative_prompt = ""
|
179 |
-
negative_prompt_2 = negative_prompt
|
180 |
-
|
181 |
-
# normalize str to list
|
182 |
-
negative_prompt = (
|
183 |
-
batch_size * [negative_prompt]
|
184 |
-
if isinstance(negative_prompt, str)
|
185 |
-
else negative_prompt
|
186 |
-
)
|
187 |
-
negative_prompt_2 = (
|
188 |
-
batch_size * [negative_prompt_2]
|
189 |
-
if isinstance(negative_prompt_2, str)
|
190 |
-
else negative_prompt_2
|
191 |
-
)
|
192 |
-
|
193 |
-
uncond_tokens: List[str]
|
194 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
195 |
-
raise TypeError(
|
196 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
197 |
-
f" {type(prompt)}."
|
198 |
-
)
|
199 |
-
elif batch_size != len(negative_prompt):
|
200 |
-
raise ValueError(
|
201 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
202 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
203 |
-
" the batch size of `prompt`."
|
204 |
-
)
|
205 |
-
else:
|
206 |
-
uncond_tokens = [negative_prompt, negative_prompt_2]
|
207 |
-
|
208 |
-
negative_prompt_embeds_list = []
|
209 |
-
for negative_prompt, tokenizer, text_encoder in zip(
|
210 |
-
uncond_tokens, tokenizers, text_encoders
|
211 |
-
):
|
212 |
-
max_length = prompt_embeds.shape[1]
|
213 |
-
uncond_input = tokenizer(
|
214 |
-
negative_prompt,
|
215 |
-
padding="max_length",
|
216 |
-
max_length=max_length,
|
217 |
-
truncation=True,
|
218 |
-
return_tensors="pt",
|
219 |
-
)
|
220 |
-
|
221 |
-
negative_prompt_embeds = text_encoder(
|
222 |
-
uncond_input.input_ids.to(device),
|
223 |
-
output_hidden_states=True,
|
224 |
-
)
|
225 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
226 |
-
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
227 |
-
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
228 |
-
|
229 |
-
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
230 |
-
|
231 |
-
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
232 |
-
|
233 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
234 |
-
|
235 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
236 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
237 |
-
prompt_embeds = prompt_embeds.repeat(1, 1, 1)
|
238 |
-
prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1)
|
239 |
-
|
240 |
-
if do_classifier_free_guidance:
|
241 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
242 |
-
seq_len = negative_prompt_embeds.shape[1]
|
243 |
-
|
244 |
-
if self.text_encoder_2 is not None:
|
245 |
-
negative_prompt_embeds = negative_prompt_embeds.to(
|
246 |
-
dtype=self.text_encoder_2.dtype, device=device
|
247 |
-
)
|
248 |
-
else:
|
249 |
-
negative_prompt_embeds = negative_prompt_embeds.to(
|
250 |
-
dtype=self.unet.dtype, device=device
|
251 |
-
)
|
252 |
-
|
253 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1)
|
254 |
-
negative_prompt_embeds = negative_prompt_embeds.view(
|
255 |
-
batch_size * 1, seq_len, -1
|
256 |
-
)
|
257 |
-
|
258 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
|
259 |
-
if do_classifier_free_guidance:
|
260 |
-
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
261 |
-
1, 1
|
262 |
-
).view(bs_embed * 1, -1)
|
263 |
-
|
264 |
-
return (
|
265 |
-
prompt_embeds,
|
266 |
-
negative_prompt_embeds,
|
267 |
-
pooled_prompt_embeds,
|
268 |
-
negative_pooled_prompt_embeds,
|
269 |
-
)
|
270 |
-
|
271 |
-
def check_inputs(
|
272 |
-
self,
|
273 |
-
prompt_embeds,
|
274 |
-
negative_prompt_embeds,
|
275 |
-
pooled_prompt_embeds,
|
276 |
-
negative_pooled_prompt_embeds,
|
277 |
-
image,
|
278 |
-
controlnet_conditioning_scale=1.0,
|
279 |
-
):
|
280 |
-
if prompt_embeds is None:
|
281 |
-
raise ValueError(
|
282 |
-
"Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined."
|
283 |
-
)
|
284 |
-
|
285 |
-
if negative_prompt_embeds is None:
|
286 |
-
raise ValueError(
|
287 |
-
"Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined."
|
288 |
-
)
|
289 |
-
|
290 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
291 |
-
raise ValueError(
|
292 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
293 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
294 |
-
f" {negative_prompt_embeds.shape}."
|
295 |
-
)
|
296 |
-
|
297 |
-
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
298 |
-
raise ValueError(
|
299 |
-
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
300 |
-
)
|
301 |
-
|
302 |
-
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
303 |
-
raise ValueError(
|
304 |
-
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
305 |
-
)
|
306 |
-
|
307 |
-
# Check `image`
|
308 |
-
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
309 |
-
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
310 |
-
)
|
311 |
-
if (
|
312 |
-
isinstance(self.controlnet, ControlNetModel_Union)
|
313 |
-
or is_compiled
|
314 |
-
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
|
315 |
-
):
|
316 |
-
if not isinstance(image, PIL.Image.Image):
|
317 |
-
raise TypeError(
|
318 |
-
f"image must be passed and has to be a PIL image, but is {type(image)}"
|
319 |
-
)
|
320 |
-
|
321 |
-
else:
|
322 |
-
assert False
|
323 |
-
|
324 |
-
# Check `controlnet_conditioning_scale`
|
325 |
-
if (
|
326 |
-
isinstance(self.controlnet, ControlNetModel_Union)
|
327 |
-
or is_compiled
|
328 |
-
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
|
329 |
-
):
|
330 |
-
if not isinstance(controlnet_conditioning_scale, float):
|
331 |
-
raise TypeError(
|
332 |
-
"For single controlnet: `controlnet_conditioning_scale` must be type `float`."
|
333 |
-
)
|
334 |
-
else:
|
335 |
-
assert False
|
336 |
-
|
337 |
-
def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
|
338 |
-
image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)
|
339 |
-
|
340 |
-
image_batch_size = image.shape[0]
|
341 |
-
|
342 |
-
image = image.repeat_interleave(image_batch_size, dim=0)
|
343 |
-
image = image.to(device=device, dtype=dtype)
|
344 |
-
|
345 |
-
if do_classifier_free_guidance:
|
346 |
-
image = torch.cat([image] * 2)
|
347 |
-
|
348 |
-
return image
|
349 |
-
|
350 |
-
def prepare_latents(
|
351 |
-
self, batch_size, num_channels_latents, height, width, dtype, device
|
352 |
-
):
|
353 |
-
shape = (
|
354 |
-
batch_size,
|
355 |
-
num_channels_latents,
|
356 |
-
int(height) // self.vae_scale_factor,
|
357 |
-
int(width) // self.vae_scale_factor,
|
358 |
-
)
|
359 |
-
|
360 |
-
latents = randn_tensor(shape, device=device, dtype=dtype)
|
361 |
-
|
362 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
363 |
-
latents = latents * self.scheduler.init_noise_sigma
|
364 |
-
return latents
|
365 |
-
|
366 |
-
@property
|
367 |
-
def guidance_scale(self):
|
368 |
-
return self._guidance_scale
|
369 |
-
|
370 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
371 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
372 |
-
# corresponds to doing no classifier free guidance.
|
373 |
-
@property
|
374 |
-
def do_classifier_free_guidance(self):
|
375 |
-
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
376 |
-
|
377 |
-
@property
|
378 |
-
def num_timesteps(self):
|
379 |
-
return self._num_timesteps
|
380 |
-
|
381 |
-
@torch.no_grad()
|
382 |
-
def __call__(
|
383 |
-
self,
|
384 |
-
prompt_embeds: torch.Tensor,
|
385 |
-
negative_prompt_embeds: torch.Tensor,
|
386 |
-
pooled_prompt_embeds: torch.Tensor,
|
387 |
-
negative_pooled_prompt_embeds: torch.Tensor,
|
388 |
-
image: PipelineImageInput = None,
|
389 |
-
num_inference_steps: int = 8,
|
390 |
-
guidance_scale: float = 1.5,
|
391 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
392 |
-
):
|
393 |
-
# 1. Check inputs. Raise error if not correct
|
394 |
-
self.check_inputs(
|
395 |
-
prompt_embeds,
|
396 |
-
negative_prompt_embeds,
|
397 |
-
pooled_prompt_embeds,
|
398 |
-
negative_pooled_prompt_embeds,
|
399 |
-
image,
|
400 |
-
controlnet_conditioning_scale,
|
401 |
-
)
|
402 |
-
|
403 |
-
self._guidance_scale = guidance_scale
|
404 |
-
|
405 |
-
# 2. Define call parameters
|
406 |
-
batch_size = 1
|
407 |
-
device = self._execution_device
|
408 |
-
|
409 |
-
# 4. Prepare image
|
410 |
-
if isinstance(self.controlnet, ControlNetModel_Union):
|
411 |
-
image = self.prepare_image(
|
412 |
-
image=image,
|
413 |
-
device=device,
|
414 |
-
dtype=self.controlnet.dtype,
|
415 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
416 |
-
)
|
417 |
-
height, width = image.shape[-2:]
|
418 |
-
else:
|
419 |
-
assert False
|
420 |
-
|
421 |
-
# 5. Prepare timesteps
|
422 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
423 |
-
self.scheduler, num_inference_steps, device
|
424 |
-
)
|
425 |
-
self._num_timesteps = len(timesteps)
|
426 |
-
|
427 |
-
# 6. Prepare latent variables
|
428 |
-
num_channels_latents = self.unet.config.in_channels
|
429 |
-
latents = self.prepare_latents(
|
430 |
-
batch_size,
|
431 |
-
num_channels_latents,
|
432 |
-
height,
|
433 |
-
width,
|
434 |
-
prompt_embeds.dtype,
|
435 |
-
device,
|
436 |
-
)
|
437 |
-
|
438 |
-
# 7 Prepare added time ids & embeddings
|
439 |
-
add_text_embeds = pooled_prompt_embeds
|
440 |
-
|
441 |
-
add_time_ids = negative_add_time_ids = torch.tensor(
|
442 |
-
image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:]
|
443 |
-
).unsqueeze(0)
|
444 |
-
|
445 |
-
if self.do_classifier_free_guidance:
|
446 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
447 |
-
add_text_embeds = torch.cat(
|
448 |
-
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
449 |
-
)
|
450 |
-
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
451 |
-
|
452 |
-
prompt_embeds = prompt_embeds.to(device)
|
453 |
-
add_text_embeds = add_text_embeds.to(device)
|
454 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size, 1)
|
455 |
-
|
456 |
-
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
|
457 |
-
union_control_type = (
|
458 |
-
torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0])
|
459 |
-
.to(device, dtype=prompt_embeds.dtype)
|
460 |
-
.repeat(batch_size * 2, 1)
|
461 |
-
)
|
462 |
-
|
463 |
-
added_cond_kwargs = {
|
464 |
-
"text_embeds": add_text_embeds,
|
465 |
-
"time_ids": add_time_ids,
|
466 |
-
"control_type": union_control_type,
|
467 |
-
}
|
468 |
-
|
469 |
-
controlnet_prompt_embeds = prompt_embeds
|
470 |
-
controlnet_added_cond_kwargs = added_cond_kwargs
|
471 |
-
|
472 |
-
# 8. Denoising loop
|
473 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
474 |
-
|
475 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
476 |
-
for i, t in enumerate(timesteps):
|
477 |
-
# expand the latents if we are doing classifier free guidance
|
478 |
-
latent_model_input = (
|
479 |
-
torch.cat([latents] * 2)
|
480 |
-
if self.do_classifier_free_guidance
|
481 |
-
else latents
|
482 |
-
)
|
483 |
-
latent_model_input = self.scheduler.scale_model_input(
|
484 |
-
latent_model_input, t
|
485 |
-
)
|
486 |
-
|
487 |
-
# controlnet(s) inference
|
488 |
-
control_model_input = latent_model_input
|
489 |
-
|
490 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
491 |
-
control_model_input,
|
492 |
-
t,
|
493 |
-
encoder_hidden_states=controlnet_prompt_embeds,
|
494 |
-
controlnet_cond_list=controlnet_image_list,
|
495 |
-
conditioning_scale=controlnet_conditioning_scale,
|
496 |
-
guess_mode=False,
|
497 |
-
added_cond_kwargs=controlnet_added_cond_kwargs,
|
498 |
-
return_dict=False,
|
499 |
-
)
|
500 |
-
|
501 |
-
# predict the noise residual
|
502 |
-
noise_pred = self.unet(
|
503 |
-
latent_model_input,
|
504 |
-
t,
|
505 |
-
encoder_hidden_states=prompt_embeds,
|
506 |
-
timestep_cond=None,
|
507 |
-
cross_attention_kwargs={},
|
508 |
-
down_block_additional_residuals=down_block_res_samples,
|
509 |
-
mid_block_additional_residual=mid_block_res_sample,
|
510 |
-
added_cond_kwargs=added_cond_kwargs,
|
511 |
-
return_dict=False,
|
512 |
-
)[0]
|
513 |
-
|
514 |
-
# perform guidance
|
515 |
-
if self.do_classifier_free_guidance:
|
516 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
517 |
-
noise_pred = noise_pred_uncond + guidance_scale * (
|
518 |
-
noise_pred_text - noise_pred_uncond
|
519 |
-
)
|
520 |
-
|
521 |
-
# compute the previous noisy sample x_t -> x_t-1
|
522 |
-
latents = self.scheduler.step(
|
523 |
-
noise_pred, t, latents, return_dict=False
|
524 |
-
)[0]
|
525 |
-
|
526 |
-
if i == 2:
|
527 |
-
prompt_embeds = prompt_embeds[-1:]
|
528 |
-
add_text_embeds = add_text_embeds[-1:]
|
529 |
-
add_time_ids = add_time_ids[-1:]
|
530 |
-
union_control_type = union_control_type[-1:]
|
531 |
-
|
532 |
-
added_cond_kwargs = {
|
533 |
-
"text_embeds": add_text_embeds,
|
534 |
-
"time_ids": add_time_ids,
|
535 |
-
"control_type": union_control_type,
|
536 |
-
}
|
537 |
-
|
538 |
-
controlnet_prompt_embeds = prompt_embeds
|
539 |
-
controlnet_added_cond_kwargs = added_cond_kwargs
|
540 |
-
|
541 |
-
image = image[-1:]
|
542 |
-
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
|
543 |
-
|
544 |
-
self._guidance_scale = 0.0
|
545 |
-
|
546 |
-
if i == len(timesteps) - 1 or (
|
547 |
-
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
548 |
-
):
|
549 |
-
progress_bar.update()
|
550 |
-
yield latents_to_rgb(latents)
|
551 |
-
|
552 |
-
latents = latents / self.vae.config.scaling_factor
|
553 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
554 |
-
image = self.image_processor.postprocess(image)[0]
|
555 |
-
|
556 |
-
# Offload all models
|
557 |
-
self.maybe_free_model_hooks()
|
558 |
-
|
559 |
-
yield image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
torch
|
2 |
spaces
|
3 |
-
gradio
|
4 |
-
|
5 |
-
numpy==1.26.4
|
6 |
transformers
|
7 |
accelerate
|
8 |
-
diffusers
|
9 |
-
|
|
|
10 |
opencv-python
|
|
|
1 |
torch
|
2 |
spaces
|
3 |
+
gradio
|
4 |
+
numpy
|
|
|
5 |
transformers
|
6 |
accelerate
|
7 |
+
diffusers
|
8 |
+
peft
|
9 |
+
fastapi
|
10 |
opencv-python
|