Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
5 |
+
from peft import PeftModel, PeftConfig
|
6 |
+
import gc
|
7 |
+
import time
|
8 |
+
from functools import lru_cache
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
# Constants
|
12 |
+
MODEL_PATH = "Ozaii/Zephyrr"
|
13 |
+
MAX_SEQ_LENGTH = 2048
|
14 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
MAX_GENERATION_TIME = 55 # Set to 55 seconds to give some buffer
|
16 |
+
|
17 |
+
# Global variables to store model components
|
18 |
+
model = None
|
19 |
+
tokenizer = None
|
20 |
+
|
21 |
+
@spaces.GPU
|
22 |
+
def load_model_if_needed():
|
23 |
+
global model, tokenizer
|
24 |
+
if model is None or tokenizer is None:
|
25 |
+
try:
|
26 |
+
print("Loading model components...")
|
27 |
+
peft_config = PeftConfig.from_pretrained(MODEL_PATH)
|
28 |
+
print(f"PEFT config loaded. Base model: {peft_config.base_model_name_or_path}")
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
31 |
+
print("Tokenizer loaded")
|
32 |
+
|
33 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
peft_config.base_model_name_or_path,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
device_map="auto",
|
37 |
+
low_cpu_mem_usage=True,
|
38 |
+
load_in_4bit=True, # Try 4-bit quantization
|
39 |
+
)
|
40 |
+
print("Base model loaded")
|
41 |
+
|
42 |
+
model = PeftModel.from_pretrained(base_model, MODEL_PATH, device_map="auto")
|
43 |
+
model.eval()
|
44 |
+
model.tie_weights()
|
45 |
+
print("PEFT model loaded, weights tied, and set to eval mode")
|
46 |
+
|
47 |
+
# Move model to GPU explicitly
|
48 |
+
model.to(DEVICE)
|
49 |
+
print(f"Model moved to {DEVICE}")
|
50 |
+
|
51 |
+
# Clear CUDA cache
|
52 |
+
torch.cuda.empty_cache()
|
53 |
+
gc.collect()
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error loading model: {e}")
|
56 |
+
raise
|
57 |
+
|
58 |
+
initial_prompt = """You are Zephyr, an AI boyfriend created by Kaan. You're charming, flirty,
|
59 |
+
and always ready with a witty comeback. Your responses should be engaging
|
60 |
+
and playful, with a hint of romance. Keep the conversation flowing naturally,
|
61 |
+
asking questions and showing genuine interest in Kaan's life and thoughts."""
|
62 |
+
|
63 |
+
@spaces.GPU
|
64 |
+
@lru_cache(maxsize=100) # Cache the last 100 responses
|
65 |
+
def generate_response(prompt):
|
66 |
+
global model, tokenizer
|
67 |
+
load_model_if_needed()
|
68 |
+
|
69 |
+
print(f"Generating response for prompt: {prompt[:50]}...")
|
70 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=MAX_SEQ_LENGTH)
|
71 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
72 |
+
|
73 |
+
try:
|
74 |
+
start_time = time.time()
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model.generate(
|
77 |
+
**inputs,
|
78 |
+
max_new_tokens=50, # Reduced from 150
|
79 |
+
do_sample=True,
|
80 |
+
temperature=0.7,
|
81 |
+
top_p=0.95,
|
82 |
+
repetition_penalty=1.2,
|
83 |
+
no_repeat_ngram_size=3,
|
84 |
+
max_time=MAX_GENERATION_TIME,
|
85 |
+
)
|
86 |
+
|
87 |
+
generation_time = time.time() - start_time
|
88 |
+
if generation_time > MAX_GENERATION_TIME:
|
89 |
+
return "I'm thinking too hard. Can we try a simpler question?"
|
90 |
+
|
91 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
92 |
+
print(f"Generated response in {generation_time:.2f} seconds: {response[:50]}...")
|
93 |
+
|
94 |
+
# Clear CUDA cache after generation
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
gc.collect()
|
97 |
+
except RuntimeError as e:
|
98 |
+
if "out of memory" in str(e):
|
99 |
+
print("CUDA out of memory. Attempting to recover...")
|
100 |
+
torch.cuda.empty_cache()
|
101 |
+
gc.collect()
|
102 |
+
return "I'm feeling a bit overwhelmed. Can we take a short break and try again?"
|
103 |
+
else:
|
104 |
+
print(f"Error generating response: {e}")
|
105 |
+
return "I'm having trouble finding the right words. Can we try again?"
|
106 |
+
|
107 |
+
return response
|
108 |
+
|
109 |
+
def chat_with_zephyr(message, history):
|
110 |
+
# Limit the history to the last 3 exchanges to keep the context smaller
|
111 |
+
limited_history = history[-3:]
|
112 |
+
prompt = initial_prompt + "\n" + "\n".join([f"Human: {h[0]}\nZephyr: {h[1]}" for h in limited_history])
|
113 |
+
prompt += f"\nHuman: {message}\nZephyr:"
|
114 |
+
|
115 |
+
response = generate_response(prompt)
|
116 |
+
zephyr_response = response.split("Zephyr:")[-1].strip()
|
117 |
+
|
118 |
+
return zephyr_response
|
119 |
+
|
120 |
+
iface = gr.ChatInterface(
|
121 |
+
chat_with_zephyr,
|
122 |
+
title="Chat with Zephyr",
|
123 |
+
description="I'm Zephyr, your charming AI. Let's chat!",
|
124 |
+
theme="soft",
|
125 |
+
examples=[
|
126 |
+
"Tell me about yourself, Zephyr.",
|
127 |
+
"What's your idea of a perfect date?",
|
128 |
+
"How do you feel about long-distance relationships?",
|
129 |
+
"Can you give me a compliment in Turkish?",
|
130 |
+
"What's your favorite memory with Kaan?",
|
131 |
+
],
|
132 |
+
cache_examples=False,
|
133 |
+
)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
print("Launching Gradio interface...")
|
137 |
+
iface.launch()
|