Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import torch
|
2 |
-
from
|
3 |
-
from peft import PeftConfig
|
4 |
-
from transformers import AutoTokenizer, TextIteratorStreamer
|
5 |
from threading import Thread
|
6 |
import gradio as gr
|
7 |
import spaces
|
@@ -10,38 +9,38 @@ MODEL_PATH = "Ozaii/zephyr-bae"
|
|
10 |
BASE_MODEL = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
11 |
max_seq_length = 2048
|
12 |
|
13 |
-
print("
|
|
|
|
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
def load_model():
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
print(f"Oops! Zephyr seems to be playing hide and seek. Error: {str(e)}")
|
39 |
-
raise
|
40 |
-
|
41 |
-
model, tokenizer = load_model()
|
42 |
|
43 |
@spaces.GPU
|
44 |
def generate_response(prompt, max_new_tokens=128):
|
|
|
45 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
|
46 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
47 |
generation_kwargs = dict(
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
3 |
+
from peft import PeftConfig, PeftModel
|
|
|
4 |
from threading import Thread
|
5 |
import gradio as gr
|
6 |
import spaces
|
|
|
9 |
BASE_MODEL = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
10 |
max_seq_length = 2048
|
11 |
|
12 |
+
print("Zephyr is getting ready to charm! 🌟")
|
13 |
+
|
14 |
+
model = None
|
15 |
+
tokenizer = None
|
16 |
|
17 |
@spaces.GPU
|
18 |
def load_model():
|
19 |
+
global model, tokenizer
|
20 |
+
if model is None:
|
21 |
+
try:
|
22 |
+
peft_config = PeftConfig.from_pretrained(MODEL_PATH)
|
23 |
+
|
24 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
BASE_MODEL,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
device_map="auto",
|
28 |
+
load_in_4bit=True
|
29 |
+
)
|
30 |
+
|
31 |
+
model = PeftModel.from_pretrained(base_model, MODEL_PATH)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
33 |
+
tokenizer.pad_token = tokenizer.eos_token
|
34 |
+
|
35 |
+
print("Zephyr loaded successfully! Time to charm!")
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Oops! Zephyr seems to be playing hide and seek. Error: {str(e)}")
|
38 |
+
raise
|
39 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
40 |
|
41 |
@spaces.GPU
|
42 |
def generate_response(prompt, max_new_tokens=128):
|
43 |
+
model, tokenizer = load_model()
|
44 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048).to(model.device)
|
45 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
46 |
generation_kwargs = dict(
|