Orawan commited on
Commit
9194c1e
·
1 Parent(s): 10a1e30

Upload app (2).py

Browse files
Files changed (1) hide show
  1. app (2).py +62 -0
app (2).py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from textblob import TextBlob
4
+ from transformers import BertForSequenceClassification, AdamW, BertConfig
5
+ st.set_page_config(layout='wide', initial_sidebar_state='expanded')
6
+ col1, col2= st.columns(2)
7
+ with col2:
8
+ text = st.text_input("Enter the text you'd like to analyze for spam.")
9
+ aButton = st.button('Analyze')
10
+ with col1:
11
+ st.title("Spamd: Turkish Spam Detector")
12
+ st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
13
+ st.markdown("Original file is located at")
14
+ st.markdown("https://colab.research.google.com/drive/1QuorqAuLsmomesZHsaQHEZgzbPEM8YTH")
15
+
16
+ import torch
17
+ import numpy as np
18
+ from transformers import AutoTokenizer
19
+ tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased")
20
+ from transformers import AutoModel
21
+ model = BertForSequenceClassification.from_pretrained("NimaKL/spamd_model")
22
+ token_id = []
23
+ attention_masks = []
24
+ def preprocessing(input_text, tokenizer):
25
+ '''
26
+ Returns <class transformers.tokenization_utils_base.BatchEncoding> with the following fields:
27
+ - input_ids: list of token ids
28
+ - token_type_ids: list of token type ids
29
+ - attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True).
30
+ '''
31
+ return tokenizer.encode_plus(
32
+ input_text,
33
+ add_special_tokens = True,
34
+ max_length = 32,
35
+ pad_to_max_length = True,
36
+ return_attention_mask = True,
37
+ return_tensors = 'pt'
38
+ )
39
+ device = 'cpu'
40
+
41
+ def predict(new_sentence):
42
+ # We need Token IDs and Attention Mask for inference on the new sentence
43
+ test_ids = []
44
+ test_attention_mask = []
45
+ # Apply the tokenizer
46
+ encoding = preprocessing(new_sentence, tokenizer)
47
+ # Extract IDs and Attention Mask
48
+ test_ids.append(encoding['input_ids'])
49
+ test_attention_mask.append(encoding['attention_mask'])
50
+ test_ids = torch.cat(test_ids, dim = 0)
51
+ test_attention_mask = torch.cat(test_attention_mask, dim = 0)
52
+ # Forward pass, calculate logit predictions
53
+ with torch.no_grad():
54
+ output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))
55
+ prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
56
+ pred = 'Predicted Class: '+ prediction
57
+ return pred
58
+
59
+ if text or aButton:
60
+ with col2:
61
+ with st.spinner('Wait for it...'):
62
+ st.success(predict(text))