# -*- coding: utf-8 -*- """Untitled15.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1LkYVMK8AOEpUsR_FhEmhaVir9hAQSBsg """ import joblib import pandas as pd import streamlit as st smoking_status = {'formerly smoked': 1, 'never smoked ': 2, 'smokes': 3, 'Unknown': 4, } model = joblib.load('model.joblib') unique_values = joblib.load('unique_values.joblib') unique_gender = unique_values["gender"] unique_ever_married = unique_values["ever_married"] unique_work_type = unique_values["work_type"] unique_Residence_type = unique_values["Residence_type"] unique_smoking_status = unique_values["smoking_status"] def main(): st.title("Stoke Analysis") with st.form("questionaire"): age = st.slider("age", min_value=0, max_value=100) gender = st.selectbox("gender", unique_gender) hypertension = st.slider("hypertension", min_value=0, max_value=1) heart_disease = st.slider("heart_disease", min_value=0, max_value=1) ever_married = st.selectbox("ever_married", unique_ever_married) work_type = st.selectbox("work_type", unique_work_type) Residence_type = st.selectbox("Residence_type", unique_Residence_type) avg_glucose_level = st.slider("avg_glucose_level", min_value=0, max_value=300) bmi = st.slider("bmi", min_value=0, max_value=100) smoking_status = st.selectbox("smoking_status", unique_smoking_status) clicked = st.form_submit_button("Predict stroke") if clicked: result=model.predict(pd.DataFrame({"age": [age], "gender": [gender], "hypertension": [hypertension], "heart_disease": [heart_disease], "ever_married": [ever_married], "work_type": [work_type], "Residence_type": [Residence_type], "avg_glucose_level": [avg_glucose_level], "bmi": [bmi], "smoking_status":[smoking_status]})) result = '1' if result[0] == 1 else '0' st.success('The predicted stroke is {}'.format(result)) if __name__=='__main__': main()