Monius
v0.3 by <M0n-ius>
dc465b0
raw
history blame
5.59 kB
# app.py
import gradio as gr
from utils import VideoProcessor, AzureAPI, GoogleAPI, AnthropicAPI, OpenAIAPI
from constraint import SYS_PROMPT, USER_PROMPT
def fast_caption(sys_prompt, usr_prompt, temp, top_p, max_tokens, model, key, endpoint, video, frame_format, frame_limit):
processor = VideoProcessor(frame_format=frame_format, frame_limit=frame_limit)
frames = processor._decode(video)
base64_list = processor.to_base64_list(frames)
debug_image = processor.concatenate(frames)
if not key or not endpoint:
return "", f"API key or endpoint is missing. Processed {len(frames)} frames.", debug_image
api = AzureAPI(key=key, endpoint=endpoint, model=model, temp=temp, top_p=top_p, max_tokens=max_tokens)
caption = api.get_caption(sys_prompt, usr_prompt, base64_list)
return f"{caption}", f"Using model '{model}' with {len(frames)} frames extracted.", debug_image
with gr.Blocks() as Core:
with gr.Row(variant="panel"):
with gr.Column(scale=6):
with gr.Accordion("Debug", open=False):
info = gr.Textbox(label="Info", interactive=False)
frame = gr.Image(label="Frame", interactive=False)
with gr.Accordion("Configuration", open=False):
with gr.Row():
temp = gr.Slider(0, 1, 0.3, step=0.1, label="Temperature")
top_p = gr.Slider(0, 1, 0.75, step=0.1, label="Top-P")
max_tokens = gr.Slider(512, 4096, 1024, step=1, label="Max Tokens")
with gr.Row():
frame_format = gr.Dropdown(label="Frame Format", value="JPEG", choices=["JPEG", "PNG"], interactive=False)
frame_limit = gr.Slider(1, 100, 10, step=1, label="Frame Limits")
with gr.Tabs():
with gr.Tab("User"):
usr_prompt = gr.Textbox(USER_PROMPT, label="User Prompt", lines=10, max_lines=100, show_copy_button=True)
with gr.Tab("System"):
sys_prompt = gr.Textbox(SYS_PROMPT, label="System Prompt", lines=10, max_lines=100, show_copy_button=True)
with gr.Tabs():
with gr.Tab("Azure"):
result = gr.Textbox(label="Result", lines=15, max_lines=100, show_copy_button=True, interactive=False)
with gr.Tab("Google"):
result_gg = gr.Textbox(label="Result", lines=15, max_lines=100, show_copy_button=True, interactive=False)
with gr.Tab("Anthropic"):
result_ac = gr.Textbox(label="Result", lines=15, max_lines=100, show_copy_button=True, interactive=False)
with gr.Tab("OpenAI"):
result_oai = gr.Textbox(label="Result", lines=15, max_lines=100, show_copy_button=True, interactive=False)
with gr.Column(scale=2):
with gr.Column():
with gr.Accordion("Model Provider", open=True):
with gr.Tabs():
with gr.Tab("Azure"):
model = gr.Dropdown(label="Model", value="GPT-4o", choices=["GPT-4o", "GPT-4v"], interactive=False)
key = gr.Textbox(label="Azure API Key")
endpoint = gr.Textbox(label="Azure Endpoint")
with gr.Tab("Google"):
model_gg = gr.Dropdown(label="Model", value="Gemini-1.5-Flash", choices=["Gemini-1.5-Flash", "Gemini-1.5-Pro"], interactive=False)
key_gg = gr.Textbox(label="Gemini API Key")
endpoint_gg = gr.Textbox(label="Gemini API Endpoint")
with gr.Tab("Anthropic"):
model_ac = gr.Dropdown(label="Model", value="Claude-3-Opus", choices=["Claude-3-Opus", "Claude-3-Sonnet"], interactive=False)
key_ac = gr.Textbox(label="Anthropic API Key")
endpoint_ac = gr.Textbox(label="Anthropic Endpoint")
with gr.Tab("OpenAI"):
model_oai = gr.Dropdown(label="Model", value="GPT-4o", choices=["GPT-4o", "GPT-4v"], interactive=False)
key_oai = gr.Textbox(label="OpenAI API Key")
endpoint_oai = gr.Textbox(label="OpenAI Endpoint")
with gr.Accordion("Data Source", open=True):
with gr.Tabs():
with gr.Tab("Upload"):
video_src = gr.Video(sources="upload", show_label=False, show_share_button=False, mirror_webcam=False)
with gr.Tab("HF"):
video_hf = gr.Text(label="Huggingface File Path")
video_hf_auth = gr.Text(label="Huggingface Token")
with gr.Tab("Onedrive"):
video_od = gr.Text("Microsoft Onedrive")
video_od_auth = gr.Text(label="Microsoft Onedrive Token")
with gr.Tab("Google Drive"):
video_gd = gr.Text()
video_gd_auth = gr.Text(label="Google Drive Access Token")
caption_button = gr.Button("Caption", variant="primary", size="lg")
caption_button.click(
fast_caption,
inputs=[sys_prompt, usr_prompt, temp, top_p, max_tokens, model, key, endpoint, video_src, frame_format, frame_limit],
outputs=[result, info, frame]
)
if __name__ == "__main__":
Core.launch()