Spaces:
Running
Running
fix quantized model saving
Browse files- app.py +31 -18
- requirements.txt +7 -3
app.py
CHANGED
@@ -32,7 +32,7 @@ from optimum.intel import (
|
|
32 |
OVWeightQuantizationConfig,
|
33 |
)
|
34 |
|
35 |
-
def
|
36 |
model_id: str,
|
37 |
dtype: str,
|
38 |
calibration_dataset: str,
|
@@ -49,6 +49,8 @@ def process_model(
|
|
49 |
new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
|
50 |
task = TasksManager.infer_task_from_model(model_id)
|
51 |
library_name = TasksManager.infer_library_from_model(model_id)
|
|
|
|
|
52 |
|
53 |
if task not in _HEAD_TO_AUTOMODELS:
|
54 |
raise ValueError(
|
@@ -82,41 +84,52 @@ def process_model(
|
|
82 |
)
|
83 |
|
84 |
api = HfApi(token=oauth_token.token)
|
85 |
-
|
86 |
if api.repo_exists(new_repo_id) and not overwritte:
|
87 |
raise Exception(f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo")
|
88 |
|
89 |
with TemporaryDirectory() as d:
|
90 |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
91 |
os.makedirs(folder)
|
|
|
92 |
try:
|
93 |
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
|
94 |
-
|
95 |
ov_model = eval(auto_model_class).from_pretrained(
|
96 |
model_id,
|
97 |
export=export,
|
98 |
-
|
|
|
|
|
99 |
)
|
100 |
ov_model.save_pretrained(folder)
|
101 |
-
|
102 |
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
|
103 |
new_repo_id = new_repo_url.repo_id
|
104 |
print("Repo created successfully!", new_repo_url)
|
105 |
|
106 |
folder = Path(folder)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
continue
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
|
121 |
try:
|
122 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
@@ -220,7 +233,7 @@ overwritte = gr.Checkbox(
|
|
220 |
info="Push files on existing repo potentially overwriting existing files",
|
221 |
)
|
222 |
interface = gr.Interface(
|
223 |
-
fn=
|
224 |
inputs=[
|
225 |
model_id,
|
226 |
dtype,
|
|
|
32 |
OVWeightQuantizationConfig,
|
33 |
)
|
34 |
|
35 |
+
def quantize_model(
|
36 |
model_id: str,
|
37 |
dtype: str,
|
38 |
calibration_dataset: str,
|
|
|
49 |
new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
|
50 |
task = TasksManager.infer_task_from_model(model_id)
|
51 |
library_name = TasksManager.infer_library_from_model(model_id)
|
52 |
+
# task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
|
53 |
+
# library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)
|
54 |
|
55 |
if task not in _HEAD_TO_AUTOMODELS:
|
56 |
raise ValueError(
|
|
|
84 |
)
|
85 |
|
86 |
api = HfApi(token=oauth_token.token)
|
|
|
87 |
if api.repo_exists(new_repo_id) and not overwritte:
|
88 |
raise Exception(f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo")
|
89 |
|
90 |
with TemporaryDirectory() as d:
|
91 |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
92 |
os.makedirs(folder)
|
93 |
+
|
94 |
try:
|
95 |
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
|
|
|
96 |
ov_model = eval(auto_model_class).from_pretrained(
|
97 |
model_id,
|
98 |
export=export,
|
99 |
+
cache_dir=folder,
|
100 |
+
token=oauth_token.token,
|
101 |
+
quantization_config=quantization_config
|
102 |
)
|
103 |
ov_model.save_pretrained(folder)
|
|
|
104 |
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
|
105 |
new_repo_id = new_repo_url.repo_id
|
106 |
print("Repo created successfully!", new_repo_url)
|
107 |
|
108 |
folder = Path(folder)
|
109 |
+
for dir_name in (
|
110 |
+
"",
|
111 |
+
"vae_encoder",
|
112 |
+
"vae_decoder",
|
113 |
+
"text_encoder",
|
114 |
+
"text_encoder_2",
|
115 |
+
"unet",
|
116 |
+
"tokenizer",
|
117 |
+
"tokenizer_2",
|
118 |
+
"scheduler",
|
119 |
+
"feature_extractor",
|
120 |
+
):
|
121 |
+
if not (folder / dir_name).is_dir():
|
122 |
continue
|
123 |
+
for file_path in (folder / dir_name).iterdir():
|
124 |
+
if file_path.is_file():
|
125 |
+
try:
|
126 |
+
api.upload_file(
|
127 |
+
path_or_fileobj=file_path,
|
128 |
+
path_in_repo=os.path.join(dir_name, file_path.name),
|
129 |
+
repo_id=new_repo_id,
|
130 |
+
)
|
131 |
+
except Exception as e:
|
132 |
+
raise Exception(f"Error uploading file {file_path}: {e}")
|
133 |
|
134 |
try:
|
135 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
|
|
233 |
info="Push files on existing repo potentially overwriting existing files",
|
234 |
)
|
235 |
interface = gr.Interface(
|
236 |
+
fn=quantize_model,
|
237 |
inputs=[
|
238 |
model_id,
|
239 |
dtype,
|
requirements.txt
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
huggingface_hub==0.23.4
|
2 |
-
|
3 |
-
optimum-intel[openvino]==1.18.1
|
4 |
-
gradio[oauth]>=4.28.0
|
5 |
gradio_huggingfacehub_search==0.0.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
huggingface_hub==0.23.4
|
2 |
+
gradio[oauth]>=4.37.2
|
|
|
|
|
3 |
gradio_huggingfacehub_search==0.0.6
|
4 |
+
transformers==4.42.4
|
5 |
+
diffusers==0.29.1
|
6 |
+
optimum==1.21.2
|
7 |
+
optimum-intel==1.18.1
|
8 |
+
openvino
|
9 |
+
nncf
|