import csv import os from datetime import datetime from typing import Optional, Union import gradio as gr from huggingface_hub import HfApi, Repository from export import convert DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters" DATA_FILENAME = "data.csv" DATA_FILE = os.path.join("openvino", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_WRITE_TOKEN") DATA_DIR = "exporters_data" repo = None if HF_TOKEN: repo = Repository(local_dir=DATA_DIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN) def export(token: str, model_id: str, task: str = "auto") -> str: if token == "" or model_id == "": return """ ### Invalid input 🐞 Please fill a token and model name. """ try: api = HfApi(token=token) error, commit_info = convert(api=api, model_id=model_id, task=task, force=False) if error != "0": return error print("[commit_info]", commit_info) # save in a private dataset if repo is not None: repo.git_pull(rebase=True) with open(os.path.join(DATA_DIR, DATA_FILE), "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=["model_id", "pr_url", "time"]) writer.writerow( { "model_id": model_id, "pr_url": commit_info.pr_url, "time": str(datetime.now()), } ) commit_url = repo.push_to_hub() print("[dataset]", commit_url) return f"#### Success 🔥 Yay! This model was successfully exported and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})" except Exception as e: return f"#### Error: {e}" TTILE_IMAGE = """
""" TITLE = """

Export your model to OpenVINO

""" DESCRIPTION = """ This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/intel/inference) to automatically export your model to the OpenVINO format. To export your model you need: - A read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). - A model id from the Hub (for example: [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)) That's it ! 🔥 After the model conversion, we will open a PR against the source repo. """ with gr.Blocks() as demo: gr.HTML(TTILE_IMAGE) gr.HTML(TITLE) with gr.Row(): with gr.Column(scale=50): gr.Markdown(DESCRIPTION) with gr.Column(scale=50): input_token = gr.Textbox( max_lines=1, label="Hugging Face token", ) input_model = gr.Textbox( max_lines=1, label="Model name", placeholder="distilbert-base-uncased-finetuned-sst-2-english", ) btn = gr.Button("Export") output = gr.Markdown(label="Output") btn.click( fn=export, inputs=[input_token, input_model], outputs=output, ) demo.launch()