File size: 3,512 Bytes
d9f713b
 
 
 
 
 
 
15c5870
d9f713b
 
 
 
 
 
 
 
 
f6fae95
 
d9f713b
cb5d8eb
 
 
 
 
 
7b1ba73
d9f713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16af792
fb5ed3a
d9f713b
 
 
 
 
fb5ed3a
d9f713b
7b1ba73
 
0aa1075
38944a2
d9f713b
0aa1075
d9f713b
 
cb5d8eb
 
 
 
 
 
 
 
 
 
 
6cb28c0
 
 
cb5d8eb
 
6cb28c0
 
 
 
 
 
cb5d8eb
6cb28c0
cb5d8eb
d9f713b
cb5d8eb
 
6cb28c0
d9f713b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import csv
import os
from datetime import datetime
from typing import Optional, Union
import gradio as gr
from huggingface_hub import HfApi, Repository
from export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch


DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("openvino", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")
DATA_DIR = "exporters_data"

repo = None
# if HF_TOKEN:
#     repo = Repository(local_dir=DATA_DIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)

def export(model_id: str, task: str, oauth_token: gr.OAuthToken) -> str:

    if oauth_token.token is None:
        raise ValueError("You must be logged in to use this space")
    token = oauth_token.token

    if model_id == "" or token == "":
        return """
        ### Invalid input 🐞
        Please fill a token and model name.
        """
    try:
        api = HfApi(token=token)

        error, commit_info = convert(api=api, model_id=model_id, task=task, force=False)
        if error != "0":
            return error

        print("[commit_info]", commit_info)

        # save in a private dataset
        if repo is not None:
            repo.git_pull(rebase=True)
            with open(os.path.join(DATA_DIR, DATA_FILE), "a") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=["model_id", "pr_url", "time"])
                writer.writerow(
                    {
                        "model_id": model_id,
                        "pr_url": commit_info.pr_url,
                        "time": str(datetime.now()),
                    }
                )
            commit_url = repo.push_to_hub()
            print("[dataset]", commit_url)

        return f"#### Success πŸ”₯ Yay! This model was successfully exported and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})"
    except Exception as e:
        return f"#### Error: {e}"


TTILE_IMAGE = """
<div
    style="
        display: block;
        margin-left: auto;
        margin-right: auto;
        width: 50%;
    "
>
<img src="https://huggingface.co/spaces/echarlaix/openvino-export/resolve/main/header.png"/>
</div>
"""

TITLE = """
<div
    style="
        display: inline-flex;
        align-items: center;
        text-align: center;
        max-width: 1400px;
        gap: 0.8rem;
        font-size: 2.2rem;
    "
>
<h1 style="text-align:center; font-weight: 1200">
    Export your model to OpenVINO
</h1>
</div>
"""

DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/intel/inference) to automatically export your model to the OpenVINO format.

After the model conversion, we will open a PR against the source repo to add the resulting model.

To export your model you need:
- A Model ID from the Hub

That's it ! πŸ”₯
"""



model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on the hub",
    search_type="model",
)
task = gr.Textbox(
    value="auto",
    label="Task : can be left to auto, will be automatically inferred",
)
interface = gr.Interface(
    fn=export,
    inputs=[
        model_id,
        task,
    ],
    outputs=[
        gr.Markdown(label="output"),
    ],
    title=TITLE,
    description=DESCRIPTION,
    api_name=False,
)

with gr.Blocks() as demo:
    gr.Markdown("You must be logged in to use this space")
    gr.LoginButton(min_width=250)
    interface.render()

demo.launch()