Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,240 Bytes
71de706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import torch
import torch.nn.functional as F
from torch import nn
from ...core import AudioSignal
from ...core import STFTParams
from ...core import util
class SpectralGate(nn.Module):
"""Spectral gating algorithm for noise reduction,
as in Audacity/Ocenaudio. The steps are as follows:
1. An FFT is calculated over the noise audio clip
2. Statistics are calculated over FFT of the the noise
(in frequency)
3. A threshold is calculated based upon the statistics
of the noise (and the desired sensitivity of the algorithm)
4. An FFT is calculated over the signal
5. A mask is determined by comparing the signal FFT to the
threshold
6. The mask is smoothed with a filter over frequency and time
7. The mask is appled to the FFT of the signal, and is inverted
Implementation inspired by Tim Sainburg's noisereduce:
https://timsainburg.com/noise-reduction-python.html
Parameters
----------
n_freq : int, optional
Number of frequency bins to smooth by, by default 3
n_time : int, optional
Number of time bins to smooth by, by default 5
"""
def __init__(self, n_freq: int = 3, n_time: int = 5):
super().__init__()
smoothing_filter = torch.outer(
torch.cat(
[
torch.linspace(0, 1, n_freq + 2)[:-1],
torch.linspace(1, 0, n_freq + 2),
]
)[..., 1:-1],
torch.cat(
[
torch.linspace(0, 1, n_time + 2)[:-1],
torch.linspace(1, 0, n_time + 2),
]
)[..., 1:-1],
)
smoothing_filter = smoothing_filter / smoothing_filter.sum()
smoothing_filter = smoothing_filter.unsqueeze(0).unsqueeze(0)
self.register_buffer("smoothing_filter", smoothing_filter)
def forward(
self,
audio_signal: AudioSignal,
nz_signal: AudioSignal,
denoise_amount: float = 1.0,
n_std: float = 3.0,
win_length: int = 2048,
hop_length: int = 512,
):
"""Perform noise reduction.
Parameters
----------
audio_signal : AudioSignal
Audio signal that noise will be removed from.
nz_signal : AudioSignal, optional
Noise signal to compute noise statistics from.
denoise_amount : float, optional
Amount to denoise by, by default 1.0
n_std : float, optional
Number of standard deviations above which to consider
noise, by default 3.0
win_length : int, optional
Length of window for STFT, by default 2048
hop_length : int, optional
Hop length for STFT, by default 512
Returns
-------
AudioSignal
Denoised audio signal.
"""
stft_params = STFTParams(win_length, hop_length, "sqrt_hann")
audio_signal = audio_signal.clone()
audio_signal.stft_data = None
audio_signal.stft_params = stft_params
nz_signal = nz_signal.clone()
nz_signal.stft_params = stft_params
nz_stft_db = 20 * nz_signal.magnitude.clamp(1e-4).log10()
nz_freq_mean = nz_stft_db.mean(keepdim=True, dim=-1)
nz_freq_std = nz_stft_db.std(keepdim=True, dim=-1)
nz_thresh = nz_freq_mean + nz_freq_std * n_std
stft_db = 20 * audio_signal.magnitude.clamp(1e-4).log10()
nb, nac, nf, nt = stft_db.shape
db_thresh = nz_thresh.expand(nb, nac, -1, nt)
stft_mask = (stft_db < db_thresh).float()
shape = stft_mask.shape
stft_mask = stft_mask.reshape(nb * nac, 1, nf, nt)
pad_tuple = (
self.smoothing_filter.shape[-2] // 2,
self.smoothing_filter.shape[-1] // 2,
)
stft_mask = F.conv2d(stft_mask, self.smoothing_filter, padding=pad_tuple)
stft_mask = stft_mask.reshape(*shape)
stft_mask *= util.ensure_tensor(denoise_amount, ndim=stft_mask.ndim).to(
audio_signal.device
)
stft_mask = 1 - stft_mask
audio_signal.stft_data *= stft_mask
audio_signal.istft()
return audio_signal
|