Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
try:
|
3 |
+
token =os.environ['HF_TOKEN']
|
4 |
+
except:
|
5 |
+
print("paste your hf token here!")
|
6 |
+
token = "hf_xxxxxxxxxxxxxxxxxxx"
|
7 |
+
os.environ['HF_TOKEN'] = token
|
8 |
+
import torch
|
9 |
+
import gradio as gr
|
10 |
+
from gradio.themes.utils import colors, fonts, sizes
|
11 |
+
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
|
14 |
+
# ========================================
|
15 |
+
# Model Initialization
|
16 |
+
# ========================================
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2_chat_8B_HD',
|
19 |
+
trust_remote_code=True,
|
20 |
+
use_fast=False,
|
21 |
+
token=token)
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
model = AutoModel.from_pretrained(
|
24 |
+
'OpenGVLab/InternVideo2_chat_8B_HD',
|
25 |
+
torch_dtype=torch.bfloat16,
|
26 |
+
trust_remote_code=True).cuda()
|
27 |
+
else:
|
28 |
+
model = AutoModel.from_pretrained(
|
29 |
+
'OpenGVLab/InternVideo2_chat_8B_HD',
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
trust_remote_code=True)
|
32 |
+
|
33 |
+
from decord import VideoReader, cpu
|
34 |
+
from PIL import Image
|
35 |
+
import numpy as np
|
36 |
+
import numpy as np
|
37 |
+
import decord
|
38 |
+
from decord import VideoReader, cpu
|
39 |
+
import torch.nn.functional as F
|
40 |
+
import torchvision.transforms as T
|
41 |
+
from torchvision.transforms import PILToTensor
|
42 |
+
from torchvision import transforms
|
43 |
+
from torchvision.transforms.functional import InterpolationMode
|
44 |
+
decord.bridge.set_bridge("torch")
|
45 |
+
|
46 |
+
# ========================================
|
47 |
+
# Define Utils
|
48 |
+
# ========================================
|
49 |
+
def get_index(num_frames, num_segments):
|
50 |
+
seg_size = float(num_frames - 1) / num_segments
|
51 |
+
start = int(seg_size / 2)
|
52 |
+
offsets = np.array([
|
53 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
54 |
+
])
|
55 |
+
return offsets
|
56 |
+
|
57 |
+
|
58 |
+
def load_video(video_path, num_segments=8, return_msg=False, resolution=224, hd_num=4, padding=False):
|
59 |
+
decord.bridge.set_bridge("torch")
|
60 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
61 |
+
num_frames = len(vr)
|
62 |
+
frame_indices = get_index(num_frames, num_segments)
|
63 |
+
|
64 |
+
mean = (0.485, 0.456, 0.406)
|
65 |
+
std = (0.229, 0.224, 0.225)
|
66 |
+
|
67 |
+
transform = transforms.Compose([
|
68 |
+
transforms.Lambda(lambda x: x.float().div(255.0)),
|
69 |
+
transforms.Normalize(mean, std)
|
70 |
+
])
|
71 |
+
|
72 |
+
frames = vr.get_batch(frame_indices)
|
73 |
+
# frames = torch.from_numpy(frames)
|
74 |
+
frames = frames.permute(0, 3, 1, 2)
|
75 |
+
|
76 |
+
if padding:
|
77 |
+
frames = HD_transform_padding(frames.float(), image_size=resolution, hd_num=hd_num)
|
78 |
+
else:
|
79 |
+
frames = HD_transform_no_padding(frames.float(), image_size=resolution, hd_num=hd_num)
|
80 |
+
|
81 |
+
frames = transform(frames)
|
82 |
+
# print(frames.shape)
|
83 |
+
T_, C, H, W = frames.shape
|
84 |
+
|
85 |
+
sub_img = frames.reshape(
|
86 |
+
1, T_, 3, H//resolution, resolution, W//resolution, resolution
|
87 |
+
).permute(0, 3, 5, 1, 2, 4, 6).reshape(-1, T_, 3, resolution, resolution).contiguous()
|
88 |
+
|
89 |
+
glb_img = F.interpolate(
|
90 |
+
frames.float(), size=(resolution, resolution), mode='bicubic', align_corners=False
|
91 |
+
).to(sub_img.dtype).unsqueeze(0)
|
92 |
+
|
93 |
+
frames = torch.cat([sub_img, glb_img]).unsqueeze(0)
|
94 |
+
|
95 |
+
if return_msg:
|
96 |
+
fps = float(vr.get_avg_fps())
|
97 |
+
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
|
98 |
+
# " " should be added in the start and end
|
99 |
+
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
|
100 |
+
return frames, msg
|
101 |
+
else:
|
102 |
+
return frames
|
103 |
+
|
104 |
+
def HD_transform_padding(frames, image_size=224, hd_num=6):
|
105 |
+
def _padding_224(frames):
|
106 |
+
_, _, H, W = frames.shape
|
107 |
+
tar = int(np.ceil(H / 224) * 224)
|
108 |
+
top_padding = (tar - H) // 2
|
109 |
+
bottom_padding = tar - H - top_padding
|
110 |
+
left_padding = 0
|
111 |
+
right_padding = 0
|
112 |
+
|
113 |
+
padded_frames = F.pad(
|
114 |
+
frames,
|
115 |
+
pad=[left_padding, right_padding, top_padding, bottom_padding],
|
116 |
+
mode='constant', value=255
|
117 |
+
)
|
118 |
+
return padded_frames
|
119 |
+
|
120 |
+
_, _, H, W = frames.shape
|
121 |
+
trans = False
|
122 |
+
if W < H:
|
123 |
+
frames = frames.flip(-2, -1)
|
124 |
+
trans = True
|
125 |
+
width, height = H, W
|
126 |
+
else:
|
127 |
+
width, height = W, H
|
128 |
+
|
129 |
+
ratio = width / height
|
130 |
+
scale = 1
|
131 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
132 |
+
scale += 1
|
133 |
+
scale -= 1
|
134 |
+
new_w = int(scale * image_size)
|
135 |
+
new_h = int(new_w / ratio)
|
136 |
+
|
137 |
+
resized_frames = F.interpolate(
|
138 |
+
frames, size=(new_h, new_w),
|
139 |
+
mode='bicubic',
|
140 |
+
align_corners=False
|
141 |
+
)
|
142 |
+
padded_frames = _padding_224(resized_frames)
|
143 |
+
|
144 |
+
if trans:
|
145 |
+
padded_frames = padded_frames.flip(-2, -1)
|
146 |
+
|
147 |
+
return padded_frames
|
148 |
+
|
149 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
150 |
+
best_ratio_diff = float('inf')
|
151 |
+
best_ratio = (1, 1)
|
152 |
+
area = width * height
|
153 |
+
for ratio in target_ratios:
|
154 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
155 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
156 |
+
if ratio_diff < best_ratio_diff:
|
157 |
+
best_ratio_diff = ratio_diff
|
158 |
+
best_ratio = ratio
|
159 |
+
elif ratio_diff == best_ratio_diff:
|
160 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
161 |
+
best_ratio = ratio
|
162 |
+
return best_ratio
|
163 |
+
|
164 |
+
|
165 |
+
def HD_transform_no_padding(frames, image_size=224, hd_num=6, fix_ratio=(2,1)):
|
166 |
+
min_num = 1
|
167 |
+
max_num = hd_num
|
168 |
+
_, _, orig_height, orig_width = frames.shape
|
169 |
+
aspect_ratio = orig_width / orig_height
|
170 |
+
|
171 |
+
# calculate the existing video aspect ratio
|
172 |
+
target_ratios = set(
|
173 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
174 |
+
i * j <= max_num and i * j >= min_num)
|
175 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
176 |
+
|
177 |
+
# find the closest aspect ratio to the target
|
178 |
+
if fix_ratio:
|
179 |
+
target_aspect_ratio = fix_ratio
|
180 |
+
else:
|
181 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
182 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
183 |
+
|
184 |
+
# calculate the target width and height
|
185 |
+
target_width = image_size * target_aspect_ratio[0]
|
186 |
+
target_height = image_size * target_aspect_ratio[1]
|
187 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
188 |
+
|
189 |
+
# resize the frames
|
190 |
+
resized_frame = F.interpolate(
|
191 |
+
frames, size=(target_height, target_width),
|
192 |
+
mode='bicubic', align_corners=False
|
193 |
+
)
|
194 |
+
return resized_frame
|
195 |
+
|
196 |
+
# ========================================
|
197 |
+
# Gradio Setting
|
198 |
+
# ========================================
|
199 |
+
def gradio_reset(chat_state, img_list):
|
200 |
+
if chat_state is not None:
|
201 |
+
chat_state = []
|
202 |
+
if img_list is not None:
|
203 |
+
img_list = None
|
204 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
205 |
+
|
206 |
+
|
207 |
+
def upload_img( gr_video, num_segments, hd_num, padding):
|
208 |
+
img_list = []
|
209 |
+
if gr_video is None:
|
210 |
+
return None, None, gr.update(interactive=True),gr.update(interactive=True, placeholder='Please upload video/image first!'), None
|
211 |
+
if gr_video:
|
212 |
+
video_tensor, msg = load_video(gr_video, num_segments=num_segments, return_msg=True, resolution=224, hd_num=hd_num, padding=padding)
|
213 |
+
video_tensor = video_tensor.to(model.device)
|
214 |
+
return gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), video_tensor
|
215 |
+
# if gr_img:
|
216 |
+
# llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
|
217 |
+
# return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False)
|
218 |
+
|
219 |
+
def clear_():
|
220 |
+
return [], []
|
221 |
+
|
222 |
+
def gradio_ask(user_message, chatbot):
|
223 |
+
if len(user_message) == 0:
|
224 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
225 |
+
chatbot = chatbot + [[user_message, None]]
|
226 |
+
return '', chatbot
|
227 |
+
|
228 |
+
|
229 |
+
def gradio_answer(chatbot, sys_prompt, user_prompt, video_tensor, chat_state, num_beams, temperature, do_sample=False):
|
230 |
+
response, chat_state = model.chat(tokenizer,
|
231 |
+
sys_prompt,
|
232 |
+
user_prompt,
|
233 |
+
media_type='video',
|
234 |
+
media_tensor=video_tensor,
|
235 |
+
chat_history= chat_state,
|
236 |
+
return_history=True,
|
237 |
+
generation_config={
|
238 |
+
"num_beams": num_beams,
|
239 |
+
"temperature": temperature,
|
240 |
+
"do_sample": do_sample})
|
241 |
+
print(response)
|
242 |
+
chatbot[-1][1] = response
|
243 |
+
return chatbot, chat_state
|
244 |
+
|
245 |
+
|
246 |
+
class OpenGVLab(gr.themes.base.Base):
|
247 |
+
def __init__(
|
248 |
+
self,
|
249 |
+
*,
|
250 |
+
primary_hue=colors.blue,
|
251 |
+
secondary_hue=colors.sky,
|
252 |
+
neutral_hue=colors.gray,
|
253 |
+
spacing_size=sizes.spacing_md,
|
254 |
+
radius_size=sizes.radius_sm,
|
255 |
+
text_size=sizes.text_md,
|
256 |
+
font=(
|
257 |
+
fonts.GoogleFont("Noto Sans"),
|
258 |
+
"ui-sans-serif",
|
259 |
+
"sans-serif",
|
260 |
+
),
|
261 |
+
font_mono=(
|
262 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
263 |
+
"ui-monospace",
|
264 |
+
"monospace",
|
265 |
+
),
|
266 |
+
):
|
267 |
+
super().__init__(
|
268 |
+
primary_hue=primary_hue,
|
269 |
+
secondary_hue=secondary_hue,
|
270 |
+
neutral_hue=neutral_hue,
|
271 |
+
spacing_size=spacing_size,
|
272 |
+
radius_size=radius_size,
|
273 |
+
text_size=text_size,
|
274 |
+
font=font,
|
275 |
+
font_mono=font_mono,
|
276 |
+
)
|
277 |
+
super().set(
|
278 |
+
body_background_fill="*neutral_50",
|
279 |
+
)
|
280 |
+
|
281 |
+
|
282 |
+
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
|
283 |
+
secondary_hue=colors.sky,
|
284 |
+
neutral_hue=colors.gray,
|
285 |
+
spacing_size=sizes.spacing_md,
|
286 |
+
radius_size=sizes.radius_sm,
|
287 |
+
text_size=sizes.text_md,
|
288 |
+
)
|
289 |
+
|
290 |
+
title = """<h1 align="center"><a href="https://github.com/OpenGVLab/Ask-Anything"><img src="https://s1.ax1x.com/2023/05/07/p9dBMOU.png" alt="Ask-Anything" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
|
291 |
+
description ="""
|
292 |
+
VideoChat2 powered by InternVideo!<br><p><a href='https://github.com/OpenGVLab/Ask-Anything'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p>
|
293 |
+
"""
|
294 |
+
SYS_PROMPT =""
|
295 |
+
|
296 |
+
with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
|
297 |
+
gr.Markdown(title)
|
298 |
+
gr.Markdown(description)
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
with gr.Column(scale=0.5, visible=True) as video_upload:
|
302 |
+
with gr.Column(elem_id="image", scale=0.5) as img_part:
|
303 |
+
# with gr.Tab("Video", elem_id='video_tab'):
|
304 |
+
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")
|
305 |
+
# with gr.Tab("Image", elem_id='image_tab'):
|
306 |
+
# up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload")
|
307 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
308 |
+
restart = gr.Button("Restart")
|
309 |
+
sys_prompt = gr.State(f"{SYS_PROMPT}")
|
310 |
+
|
311 |
+
num_beams = gr.Slider(
|
312 |
+
minimum=1,
|
313 |
+
maximum=10,
|
314 |
+
value=1,
|
315 |
+
step=1,
|
316 |
+
interactive=True,
|
317 |
+
label="beam search numbers)",
|
318 |
+
)
|
319 |
+
|
320 |
+
temperature = gr.Slider(
|
321 |
+
minimum=0.1,
|
322 |
+
maximum=2.0,
|
323 |
+
value=1.0,
|
324 |
+
step=0.1,
|
325 |
+
interactive=True,label="Temperature",
|
326 |
+
)
|
327 |
+
|
328 |
+
num_segments = gr.Slider(
|
329 |
+
minimum=8,
|
330 |
+
maximum=64,
|
331 |
+
value=8,
|
332 |
+
step=1,
|
333 |
+
interactive=True,
|
334 |
+
label="Input Frames",
|
335 |
+
)
|
336 |
+
|
337 |
+
resolution = gr.Slider(
|
338 |
+
minimum=224,
|
339 |
+
maximum=224,
|
340 |
+
value=224,
|
341 |
+
step=1,
|
342 |
+
interactive=True,
|
343 |
+
label="Vision encoder resolution",
|
344 |
+
)
|
345 |
+
|
346 |
+
hd_num = gr.Slider(
|
347 |
+
minimum=1,
|
348 |
+
maximum=10,
|
349 |
+
value=4,
|
350 |
+
step=1,
|
351 |
+
interactive=True,
|
352 |
+
label="HD num",
|
353 |
+
)
|
354 |
+
|
355 |
+
padding = gr.Checkbox(
|
356 |
+
label="padding",
|
357 |
+
info=""
|
358 |
+
)
|
359 |
+
|
360 |
+
with gr.Column(visible=True) as input_raws:
|
361 |
+
chat_state = gr.State([])
|
362 |
+
img_list = gr.State()
|
363 |
+
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
|
364 |
+
with gr.Row():
|
365 |
+
with gr.Column(scale=0.7):
|
366 |
+
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False)
|
367 |
+
with gr.Column(scale=0.15, min_width=0):
|
368 |
+
run = gr.Button("💭Send")
|
369 |
+
with gr.Column(scale=0.15, min_width=0):
|
370 |
+
clear = gr.Button("🔄Clear️")
|
371 |
+
|
372 |
+
upload_button.click(upload_img, [ up_video, num_segments, hd_num, padding], [ up_video, text_input, upload_button, img_list])
|
373 |
+
|
374 |
+
text_input.submit(gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
|
375 |
+
gradio_answer, [chatbot, sys_prompt, text_input, img_list, chat_state, num_beams, temperature], [chatbot, chat_state]
|
376 |
+
)
|
377 |
+
run.click(gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
|
378 |
+
gradio_answer, [chatbot, sys_prompt, text_input, img_list, chat_state, num_beams, temperature], [chatbot, chat_state]
|
379 |
+
)
|
380 |
+
run.click(lambda: "", None, text_input)
|
381 |
+
clear.click(clear_, None, [chatbot, chat_state])
|
382 |
+
restart.click(gradio_reset, [chat_state, img_list], [chatbot, up_video, text_input, upload_button, chat_state, img_list], queue=False)
|
383 |
+
|
384 |
+
demo.launch()
|