laizeqiang
commited on
Commit
·
1d63199
1
Parent(s):
70444e2
update
Browse files- iGPT/models/husky.py +32 -6
- iGPT/models/husky_src/convert_llama_weights_to_hf.py +281 -0
- iGPT/models/inpainting.py +9 -2
- iGPT/models/utils.py +6 -5
- requirements.txt +2 -1
- third-party/llama_download.sh +33 -0
iGPT/models/husky.py
CHANGED
@@ -66,13 +66,10 @@ def load_model(
|
|
66 |
):
|
67 |
kwargs = {"torch_dtype": torch.float16}
|
68 |
|
69 |
-
if not os.path.exists(model_path[1]):
|
70 |
-
apply_delta(model_path[0], model_path[1], model_path[2])
|
71 |
-
|
72 |
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
-
model_path
|
74 |
model = Blip2LlaMAForConditionalGeneration.from_pretrained(
|
75 |
-
model_path
|
76 |
)
|
77 |
|
78 |
if load_8bit:
|
@@ -337,12 +334,41 @@ class Chat:
|
|
337 |
else:
|
338 |
self.conv = get_default_conv_template(self.model_path).copy()
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
class HuskyVQA:
|
341 |
def __init__(
|
342 |
self,
|
343 |
device
|
344 |
):
|
345 |
-
model_path=
|
|
|
|
|
|
|
|
|
346 |
load_8bit=True
|
347 |
max_new_tokens=512
|
348 |
self.chat = Chat(
|
|
|
66 |
):
|
67 |
kwargs = {"torch_dtype": torch.float16}
|
68 |
|
|
|
|
|
|
|
69 |
tokenizer = AutoTokenizer.from_pretrained(
|
70 |
+
model_path, use_fast=False)
|
71 |
model = Blip2LlaMAForConditionalGeneration.from_pretrained(
|
72 |
+
model_path, low_cpu_mem_usage=True, **kwargs
|
73 |
)
|
74 |
|
75 |
if load_8bit:
|
|
|
334 |
else:
|
335 |
self.conv = get_default_conv_template(self.model_path).copy()
|
336 |
|
337 |
+
|
338 |
+
def download_if_not_exists(base_path, delta_path, new_path):
|
339 |
+
if os.path.exists(new_path):
|
340 |
+
return
|
341 |
+
|
342 |
+
if not os.path.exists(base_path):
|
343 |
+
# download if not exists
|
344 |
+
os.system('bash third-party/llama_download.sh')
|
345 |
+
|
346 |
+
output_dir = os.path.join(os.path.dirname(base_path), 'llama_7B_hf')
|
347 |
+
|
348 |
+
if not os.path.exists(output_dir):
|
349 |
+
# convert to hf format if not exists
|
350 |
+
from .husky_src.convert_llama_weights_to_hf import write_model, write_tokenizer
|
351 |
+
write_model(
|
352 |
+
model_path=output_dir,
|
353 |
+
input_base_path=os.path.join(base_path, '7B'),
|
354 |
+
model_size="7B",
|
355 |
+
)
|
356 |
+
spm_path = os.path.join(base_path, "tokenizer.model")
|
357 |
+
write_tokenizer(output_dir, spm_path)
|
358 |
+
|
359 |
+
apply_delta(output_dir, new_path, delta_path)
|
360 |
+
|
361 |
+
|
362 |
class HuskyVQA:
|
363 |
def __init__(
|
364 |
self,
|
365 |
device
|
366 |
):
|
367 |
+
model_path = 'model_zoo/husky-7b-v0_01'
|
368 |
+
download_if_not_exists(base_path="model_zoo/llama",
|
369 |
+
delta_path="model_zoo/husky-7b-delta-v0_01",
|
370 |
+
new_path=model_path)
|
371 |
+
|
372 |
load_8bit=True
|
373 |
max_new_tokens=512
|
374 |
self.chat = Chat(
|
iGPT/models/husky_src/convert_llama_weights_to_hf.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import gc
|
19 |
+
import json
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
import shutil
|
23 |
+
import warnings
|
24 |
+
|
25 |
+
import torch
|
26 |
+
|
27 |
+
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
28 |
+
|
29 |
+
|
30 |
+
try:
|
31 |
+
from transformers import LlamaTokenizerFast
|
32 |
+
except ImportError as e:
|
33 |
+
warnings.warn(e)
|
34 |
+
warnings.warn(
|
35 |
+
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
36 |
+
)
|
37 |
+
LlamaTokenizerFast = None
|
38 |
+
|
39 |
+
"""
|
40 |
+
Sample usage:
|
41 |
+
|
42 |
+
```
|
43 |
+
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
44 |
+
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
45 |
+
```
|
46 |
+
|
47 |
+
Thereafter, models can be loaded via:
|
48 |
+
|
49 |
+
```py
|
50 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
51 |
+
|
52 |
+
model = LlamaForCausalLM.from_pretrained("/output/path")
|
53 |
+
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
54 |
+
```
|
55 |
+
|
56 |
+
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
57 |
+
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
58 |
+
"""
|
59 |
+
|
60 |
+
INTERMEDIATE_SIZE_MAP = {
|
61 |
+
"7B": 11008,
|
62 |
+
"13B": 13824,
|
63 |
+
"30B": 17920,
|
64 |
+
"65B": 22016,
|
65 |
+
}
|
66 |
+
NUM_SHARDS = {
|
67 |
+
"7B": 1,
|
68 |
+
"13B": 2,
|
69 |
+
"30B": 4,
|
70 |
+
"65B": 8,
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def compute_intermediate_size(n):
|
75 |
+
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
|
76 |
+
|
77 |
+
|
78 |
+
def read_json(path):
|
79 |
+
with open(path, "r") as f:
|
80 |
+
return json.load(f)
|
81 |
+
|
82 |
+
|
83 |
+
def write_json(text, path):
|
84 |
+
with open(path, "w") as f:
|
85 |
+
json.dump(text, f)
|
86 |
+
|
87 |
+
|
88 |
+
def write_model(model_path, input_base_path, model_size):
|
89 |
+
os.makedirs(model_path, exist_ok=True)
|
90 |
+
tmp_model_path = os.path.join(model_path, "tmp")
|
91 |
+
os.makedirs(tmp_model_path, exist_ok=True)
|
92 |
+
|
93 |
+
params = read_json(os.path.join(input_base_path, "params.json"))
|
94 |
+
num_shards = NUM_SHARDS[model_size]
|
95 |
+
n_layers = params["n_layers"]
|
96 |
+
n_heads = params["n_heads"]
|
97 |
+
n_heads_per_shard = n_heads // num_shards
|
98 |
+
dim = params["dim"]
|
99 |
+
dims_per_head = dim // n_heads
|
100 |
+
base = 10000.0
|
101 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
102 |
+
|
103 |
+
# permute for sliced rotary
|
104 |
+
def permute(w):
|
105 |
+
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
|
106 |
+
|
107 |
+
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
|
108 |
+
# Load weights
|
109 |
+
if model_size == "7B":
|
110 |
+
# Not sharded
|
111 |
+
# (The sharded implementation would also work, but this is simpler.)
|
112 |
+
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
113 |
+
else:
|
114 |
+
# Sharded
|
115 |
+
loaded = [
|
116 |
+
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
|
117 |
+
for i in range(num_shards)
|
118 |
+
]
|
119 |
+
param_count = 0
|
120 |
+
index_dict = {"weight_map": {}}
|
121 |
+
for layer_i in range(n_layers):
|
122 |
+
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
|
123 |
+
if model_size == "7B":
|
124 |
+
# Unsharded
|
125 |
+
state_dict = {
|
126 |
+
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
127 |
+
loaded[f"layers.{layer_i}.attention.wq.weight"]
|
128 |
+
),
|
129 |
+
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
130 |
+
loaded[f"layers.{layer_i}.attention.wk.weight"]
|
131 |
+
),
|
132 |
+
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
|
133 |
+
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
|
134 |
+
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
|
135 |
+
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
|
136 |
+
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
|
137 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
|
138 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
139 |
+
}
|
140 |
+
else:
|
141 |
+
# Sharded
|
142 |
+
# Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint
|
143 |
+
# becoming 37GB instead of 26GB for some reason.
|
144 |
+
state_dict = {
|
145 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
|
146 |
+
f"layers.{layer_i}.attention_norm.weight"
|
147 |
+
].clone(),
|
148 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
|
149 |
+
f"layers.{layer_i}.ffn_norm.weight"
|
150 |
+
].clone(),
|
151 |
+
}
|
152 |
+
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
153 |
+
torch.cat(
|
154 |
+
[
|
155 |
+
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
156 |
+
for i in range(num_shards)
|
157 |
+
],
|
158 |
+
dim=0,
|
159 |
+
).reshape(dim, dim)
|
160 |
+
)
|
161 |
+
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
162 |
+
torch.cat(
|
163 |
+
[
|
164 |
+
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
165 |
+
for i in range(num_shards)
|
166 |
+
],
|
167 |
+
dim=0,
|
168 |
+
).reshape(dim, dim)
|
169 |
+
)
|
170 |
+
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
171 |
+
[
|
172 |
+
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
173 |
+
for i in range(num_shards)
|
174 |
+
],
|
175 |
+
dim=0,
|
176 |
+
).reshape(dim, dim)
|
177 |
+
|
178 |
+
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
179 |
+
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
|
180 |
+
)
|
181 |
+
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
182 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
|
183 |
+
)
|
184 |
+
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
185 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
|
186 |
+
)
|
187 |
+
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
188 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
|
189 |
+
)
|
190 |
+
|
191 |
+
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
192 |
+
for k, v in state_dict.items():
|
193 |
+
index_dict["weight_map"][k] = filename
|
194 |
+
param_count += v.numel()
|
195 |
+
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
196 |
+
|
197 |
+
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
|
198 |
+
if model_size == "7B":
|
199 |
+
# Unsharded
|
200 |
+
state_dict = {
|
201 |
+
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
202 |
+
"model.norm.weight": loaded["norm.weight"],
|
203 |
+
"lm_head.weight": loaded["output.weight"],
|
204 |
+
}
|
205 |
+
else:
|
206 |
+
state_dict = {
|
207 |
+
"model.norm.weight": loaded[0]["norm.weight"],
|
208 |
+
"model.embed_tokens.weight": torch.cat(
|
209 |
+
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
|
210 |
+
),
|
211 |
+
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
|
212 |
+
}
|
213 |
+
|
214 |
+
for k, v in state_dict.items():
|
215 |
+
index_dict["weight_map"][k] = filename
|
216 |
+
param_count += v.numel()
|
217 |
+
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
218 |
+
|
219 |
+
# Write configs
|
220 |
+
index_dict["metadata"] = {"total_size": param_count * 2}
|
221 |
+
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
222 |
+
|
223 |
+
config = LlamaConfig(
|
224 |
+
hidden_size=dim,
|
225 |
+
intermediate_size=compute_intermediate_size(dim),
|
226 |
+
num_attention_heads=params["n_heads"],
|
227 |
+
num_hidden_layers=params["n_layers"],
|
228 |
+
rms_norm_eps=params["norm_eps"],
|
229 |
+
)
|
230 |
+
config.save_pretrained(tmp_model_path)
|
231 |
+
|
232 |
+
# Make space so we can load the model properly now.
|
233 |
+
del state_dict
|
234 |
+
del loaded
|
235 |
+
gc.collect()
|
236 |
+
|
237 |
+
print("Loading the checkpoint in a Llama model.")
|
238 |
+
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
239 |
+
# Avoid saving this as part of the config.
|
240 |
+
del model.config._name_or_path
|
241 |
+
|
242 |
+
print("Saving in the Transformers format.")
|
243 |
+
model.save_pretrained(model_path)
|
244 |
+
shutil.rmtree(tmp_model_path)
|
245 |
+
|
246 |
+
|
247 |
+
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
248 |
+
# Initialize the tokenizer based on the `spm` model
|
249 |
+
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
|
250 |
+
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
251 |
+
tokenizer = tokenizer_class(input_tokenizer_path)
|
252 |
+
tokenizer.save_pretrained(tokenizer_path)
|
253 |
+
|
254 |
+
|
255 |
+
def main():
|
256 |
+
parser = argparse.ArgumentParser()
|
257 |
+
parser.add_argument(
|
258 |
+
"--input_dir",
|
259 |
+
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
|
260 |
+
)
|
261 |
+
parser.add_argument(
|
262 |
+
"--model_size",
|
263 |
+
choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
|
264 |
+
)
|
265 |
+
parser.add_argument(
|
266 |
+
"--output_dir",
|
267 |
+
help="Location to write HF model and tokenizer",
|
268 |
+
)
|
269 |
+
args = parser.parse_args()
|
270 |
+
if args.model_size != "tokenizer_only":
|
271 |
+
write_model(
|
272 |
+
model_path=args.output_dir,
|
273 |
+
input_base_path=os.path.join(args.input_dir, args.model_size),
|
274 |
+
model_size=args.model_size,
|
275 |
+
)
|
276 |
+
spm_path = os.path.join(args.input_dir, "tokenizer.model")
|
277 |
+
write_tokenizer(args.output_dir, spm_path)
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
main()
|
iGPT/models/inpainting.py
CHANGED
@@ -8,6 +8,7 @@ from .utils import gen_new_name, prompts
|
|
8 |
import torch
|
9 |
from omegaconf import OmegaConf
|
10 |
import numpy as np
|
|
|
11 |
from .inpainting_src.ldm_inpainting.ldm.models.diffusion.ddim import DDIMSampler
|
12 |
from .inpainting_src.ldm_inpainting.ldm.util import instantiate_from_config
|
13 |
from .utils import cal_dilate_factor, dilate_mask
|
@@ -35,16 +36,22 @@ def make_batch(image, mask, device):
|
|
35 |
|
36 |
class LDMInpainting:
|
37 |
def __init__(self, device):
|
38 |
-
|
39 |
config = './iGPT/models/inpainting_src/ldm_inpainting/config.yaml'
|
40 |
self.ddim_steps = 50
|
41 |
self.device = device
|
42 |
config = OmegaConf.load(config)
|
43 |
model = instantiate_from_config(config.model)
|
44 |
-
|
|
|
45 |
self.model = model.to(device=device)
|
46 |
self.sampler = DDIMSampler(model)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
@prompts(name="Remove the Masked Object",
|
49 |
description="useful when you want to remove an object by masking the region in the image. "
|
50 |
"like: remove masked object or inpaint the masked region.. "
|
|
|
8 |
import torch
|
9 |
from omegaconf import OmegaConf
|
10 |
import numpy as np
|
11 |
+
import wget
|
12 |
from .inpainting_src.ldm_inpainting.ldm.models.diffusion.ddim import DDIMSampler
|
13 |
from .inpainting_src.ldm_inpainting.ldm.util import instantiate_from_config
|
14 |
from .utils import cal_dilate_factor, dilate_mask
|
|
|
36 |
|
37 |
class LDMInpainting:
|
38 |
def __init__(self, device):
|
39 |
+
self.model_checkpoint_path = 'model_zoo/ldm_inpainting_big.ckpt'
|
40 |
config = './iGPT/models/inpainting_src/ldm_inpainting/config.yaml'
|
41 |
self.ddim_steps = 50
|
42 |
self.device = device
|
43 |
config = OmegaConf.load(config)
|
44 |
model = instantiate_from_config(config.model)
|
45 |
+
self.download_parameters()
|
46 |
+
model.load_state_dict(torch.load(self.model_checkpoint_path)["state_dict"], strict=False)
|
47 |
self.model = model.to(device=device)
|
48 |
self.sampler = DDIMSampler(model)
|
49 |
|
50 |
+
def download_parameters(self):
|
51 |
+
url = 'https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1'
|
52 |
+
if not os.path.exists(self.model_checkpoint_path):
|
53 |
+
wget.download(url, out=self.model_checkpoint_path)
|
54 |
+
|
55 |
@prompts(name="Remove the Masked Object",
|
56 |
description="useful when you want to remove an object by masking the region in the image. "
|
57 |
"like: remove masked object or inpaint the masked region.. "
|
iGPT/models/utils.py
CHANGED
@@ -38,11 +38,12 @@ def gen_new_name(orginal_name, suffix="update", ext="png"):
|
|
38 |
name_split = os.path.splitext(filename)[0].split('_')
|
39 |
this_new_uuid = str(uuid.uuid4())[:3]
|
40 |
timestamp = int(math.modf(time.time())[0] * 1000)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
if len(suffix.strip()) == 0:
|
47 |
new_file_name = f'{this_new_uuid}{timestamp:03d}_{prev_file_name}.{ext}'
|
48 |
else:
|
|
|
38 |
name_split = os.path.splitext(filename)[0].split('_')
|
39 |
this_new_uuid = str(uuid.uuid4())[:3]
|
40 |
timestamp = int(math.modf(time.time())[0] * 1000)
|
41 |
+
prev_file_name = name_split[0]
|
42 |
+
# if len(name_split) == 1:
|
43 |
+
# prev_file_name = name_split[0]
|
44 |
+
# else:
|
45 |
+
# # assert len(name_split) == 3
|
46 |
+
# prev_file_name = name_split[0]
|
47 |
if len(suffix.strip()) == 0:
|
48 |
new_file_name = f'{this_new_uuid}{timestamp:03d}_{prev_file_name}.{ext}'
|
49 |
else:
|
requirements.txt
CHANGED
@@ -23,4 +23,5 @@ kornia==0.5.0
|
|
23 |
sentencepiece==0.1.98
|
24 |
accelerate==0.18.0
|
25 |
timm==0.6.13
|
26 |
-
git+https://github.com/facebookresearch/segment-anything.git
|
|
|
|
23 |
sentencepiece==0.1.98
|
24 |
accelerate==0.18.0
|
25 |
timm==0.6.13
|
26 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
27 |
+
wget
|
third-party/llama_download.sh
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
3 |
+
|
4 |
+
PRESIGNED_URL="" # replace with presigned url from email
|
5 |
+
MODEL_SIZE="7B" # edit this list with the model sizes you wish to download
|
6 |
+
TARGET_FOLDER="model_zoo/llama" # where all files should end up
|
7 |
+
|
8 |
+
declare -A N_SHARD_DICT
|
9 |
+
|
10 |
+
N_SHARD_DICT["7B"]="0"
|
11 |
+
N_SHARD_DICT["13B"]="1"
|
12 |
+
N_SHARD_DICT["30B"]="3"
|
13 |
+
N_SHARD_DICT["65B"]="7"
|
14 |
+
|
15 |
+
echo "Downloading tokenizer"
|
16 |
+
wget ${PRESIGNED_URL/'*'/"tokenizer.model"} -O ${TARGET_FOLDER}"/tokenizer.model"
|
17 |
+
wget ${PRESIGNED_URL/'*'/"tokenizer_checklist.chk"} -O ${TARGET_FOLDER}"/tokenizer_checklist.chk"
|
18 |
+
|
19 |
+
(cd ${TARGET_FOLDER} && md5sum -c tokenizer_checklist.chk)
|
20 |
+
|
21 |
+
for i in ${MODEL_SIZE//,/ }
|
22 |
+
do
|
23 |
+
echo "Downloading ${i}"
|
24 |
+
mkdir -p ${TARGET_FOLDER}"/${i}"
|
25 |
+
for s in $(seq -f "0%g" 0 ${N_SHARD_DICT[$i]})
|
26 |
+
do
|
27 |
+
wget ${PRESIGNED_URL/'*'/"${i}/consolidated.${s}.pth"} -O ${TARGET_FOLDER}"/${i}/consolidated.${s}.pth"
|
28 |
+
done
|
29 |
+
wget ${PRESIGNED_URL/'*'/"${i}/params.json"} -O ${TARGET_FOLDER}"/${i}/params.json"
|
30 |
+
wget ${PRESIGNED_URL/'*'/"${i}/checklist.chk"} -O ${TARGET_FOLDER}"/${i}/checklist.chk"
|
31 |
+
echo "Checking checksums"
|
32 |
+
(cd ${TARGET_FOLDER}"/${i}" && md5sum -c checklist.chk)
|
33 |
+
done
|