File size: 76,068 Bytes
0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 |
import os
import torch
from PIL import Image, ImageOps
import math
import time
import numpy as np
import uuid
import cv2
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from .utils import seed_everything, gen_new_name, prompts, GLOBAL_SEED
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
from segment_anything.utils.amg import remove_small_regions
from segment_anything import build_sam, sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from torchvision.utils import save_image
import matplotlib.pyplot as plt
from omegaconf import OmegaConf
import yaml
import matplotlib.pyplot as plt
# Please DO NOT MOVE THE IMPORT ORDER FOR easyocr.
import easyocr
from saicinpainting.evaluation.utils import move_to_device
from saicinpainting.training.trainers import load_checkpoint
from saicinpainting.evaluation.data import pad_tensor_to_modulo
# from .utils import prompts
# GLOBAL_SEED=19120623
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
class MaskFormer:
def __init__(self, device):
print(f"Initializing MaskFormer to {device}")
self.device = device
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
def inference(self, image_path, text):
threshold = 0.5
min_area = 0.02
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
if area_ratio < min_area:
return None
true_indices = np.argwhere(mask)
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
return image_mask.resize(original_image.size)
class ImageEditing:
def __init__(self, device):
print(f"Initializing ImageEditing to {device}")
self.device = device
self.mask_former = MaskFormer(device=self.device)
self.revision = 'fp16' if 'cuda' in device else None
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
@prompts(name="Remove Something From The Photo",
description="useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. ")
def inference_remove(self, inputs):
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
@prompts(name="Replace Something From The Photo",
description="useful when you want to replace an object from the object description or "
"location with another object from its description. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, the object to be replaced, the object to be replaced with ")
def inference_replace(self, inputs):
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
original_image = Image.open(image_path)
original_size = original_image.size
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)),
mask_image=mask_image.resize((512, 512))).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="replace-something")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
updated_image = updated_image.resize(original_size)
updated_image.save(updated_image_path)
print(
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class InstructPix2Pix:
def __init__(self, device):
print(f"Initializing InstructPix2Pix to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
safety_checker=None,
torch_dtype=self.torch_dtype).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
@prompts(name="Instruct Image Using Text",
description="useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. ")
def inference(self, inputs):
"""Change style of image."""
print("===>Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
original_image = Image.open(image_path)
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Text2Image:
def __init__(self, device):
print(f"Initializing Text2Image to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
torch_dtype=self.torch_dtype)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ")
def inference(self, text):
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
prompt = text + ', ' + self.a_prompt
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
image.save(image_filename)
print(
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print(f"Initializing ImageCaptioning to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)
@prompts(name="Get Photo Description",
description="useful when you want to know what is inside the photo. receives image_path as input. "
"The input to this tool should be a string, representing the image_path. ")
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
return captions
class Image2Canny:
def __init__(self, device):
print("Initializing Image2Canny")
self.low_threshold = 100
self.high_threshold = 200
@prompts(name="Edge Detection On Image",
description="useful when you want to detect the edge of the image. "
"like: detect the edges of this image, or canny detection on image, "
"or perform edge detection on this image, or detect the canny image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
image = np.array(image)
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
canny = canny[:, :, None]
canny = np.concatenate([canny, canny, canny], axis=2)
canny = Image.fromarray(canny)
# updated_image_path = get_new_image_name(inputs, func_name="edge")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
canny.save(updated_image_path)
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
return updated_image_path
class CannyText2Image:
def __init__(self, device):
print(f"Initializing CannyText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Canny Image",
description="useful when you want to generate a new real image from both the user description and a canny image."
" like: generate a real image of a object or something from this canny image,"
" or generate a new real image of a object or something from this edge image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Line:
def __init__(self, device):
print("Initializing Image2Line")
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Line Detection On Image",
description="useful when you want to detect the straight line of the image. "
"like: detect the straight lines of this image, or straight line detection on image, "
"or perform straight line detection on this image, or detect the straight line image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
mlsd = self.detector(image)
# updated_image_path = get_new_image_name(inputs, func_name="line-of")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
mlsd.save(updated_image_path)
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
return updated_image_path
class LineText2Image:
def __init__(self, device):
print(f"Initializing LineText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Line Image",
description="useful when you want to generate a new real image from both the user description "
"and a straight line image. "
"like: generate a real image of a object or something from this straight line image, "
"or generate a new real image of a object or something from this straight lines. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="line2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Hed:
def __init__(self, device):
print("Initializing Image2Hed")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Hed Detection On Image",
description="useful when you want to detect the soft hed boundary of the image. "
"like: detect the soft hed boundary of this image, or hed boundary detection on image, "
"or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
hed = self.detector(image)
# updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
hed.save(updated_image_path)
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
return updated_image_path
class HedText2Image:
def __init__(self, device):
print(f"Initializing HedText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
description="useful when you want to generate a new real image from both the user description "
"and a soft hed boundary image. "
"like: generate a real image of a object or something from this soft hed boundary image, "
"or generate a new real image of a object or something from this hed boundary. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Scribble:
def __init__(self, device):
print("Initializing Image2Scribble")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Sketch Detection On Image",
description="useful when you want to generate a scribble of the image. "
"like: generate a scribble of this image, or generate a sketch from this image, "
"detect the sketch from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
scribble = self.detector(image, scribble=True)
# updated_image_path = get_new_image_name(inputs, func_name="scribble")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
scribble.save(updated_image_path)
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
return updated_image_path
class ScribbleText2Image:
def __init__(self, device):
print(f"Initializing ScribbleText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Sketch Image",
description="useful when you want to generate a new real image from both the user description and "
"a scribble image or a sketch image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Pose:
def __init__(self, device):
print("Initializing Image2Pose")
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Pose Detection On Image",
description="useful when you want to detect the human pose of the image. "
"like: generate human poses of this image, or generate a pose image from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
pose = self.detector(image)
# updated_image_path = get_new_image_name(inputs, func_name="human-pose")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
pose.save(updated_image_path)
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
return updated_image_path
class PoseText2Image:
def __init__(self, device):
print(f"Initializing PoseText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.num_inference_steps = 20
self.seed = -1
self.unconditional_guidance_scale = 9.0
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Pose Image",
description="useful when you want to generate a new real image from both the user description "
"and a human pose image. "
"like: generate a real image of a human from this human pose image, "
"or generate a new real image of a human from this pose. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="pose2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class SegText2Image:
def __init__(self, device):
print(f"Initializing SegText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Segmentations",
description="useful when you want to generate a new real image from both the user description and segmentations. "
"like: generate a real image of a object or something from this segmentation image, "
"or generate a new real image of a object or something from these segmentations. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def a_inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
seed_everything(GLOBAL_SEED)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="segment2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
'''
class ConditionalText2Image:
template_model = True
def __init__(self, models):
self.models = models
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Beautify the Image with other Conditions",
description="useful when you want to generate a new real image from both the user description and condition. "
"Condition can be one of segmentation, canny, scribble"
"like: Beautify a image from its segmentation and description "
"or generate a image from its canny and description. "
"or generate a real image from scribble and description. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, condition, instruction")
def inference(self, inputs):
image_path, condition, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
# image = Image.open(image_path)
if 'segmentation' in condition.lower():
seg_path = self.models['SegmentAnything'].inference(image_path)
updated_image_path = self.models['SegText2Image'].a_inference(seg_path+","+instruct_text)
else:
raise NotImplementedError(condition)
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
'''
class Image2Depth:
def __init__(self, device):
print("Initializing Image2Depth")
self.depth_estimator = pipeline('depth-estimation')
@prompts(name="Predict Depth On Image",
description="useful when you want to detect depth of the image. like: generate the depth from this image, "
"or detect the depth map on this image, or predict the depth for this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
depth = self.depth_estimator(image)['depth']
depth = np.array(depth)
depth = depth[:, :, None]
depth = np.concatenate([depth, depth, depth], axis=2)
depth = Image.fromarray(depth)
# updated_image_path = get_new_image_name(inputs, func_name="depth")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
depth.save(updated_image_path)
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class DepthText2Image:
def __init__(self, device):
print(f"Initializing DepthText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Depth",
description="useful when you want to generate a new real image from both the user description and depth image. "
"like: generate a real image of a object or something from this depth image, "
"or generate a new real image of a object or something from the depth map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
# updated_image_path = get_new_image_name(image_path, func_name="depth2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Normal:
def __init__(self, device):
print("Initializing Image2Normal")
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
self.bg_threhold = 0.4
@prompts(name="Predict Normal Map On Image",
description="useful when you want to detect norm map of the image. "
"like: generate normal map from this image, or predict normal map of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
original_size = image.size
image = self.depth_estimator(image)['predicted_depth'][0]
image = image.numpy()
image_depth = image.copy()
image_depth -= np.min(image_depth)
image_depth /= np.max(image_depth)
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
x[image_depth < self.bg_threhold] = 0
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
y[image_depth < self.bg_threhold] = 0
z = np.ones_like(x) * np.pi * 2.0
image = np.stack([x, y, z], axis=2)
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
image = image.resize(original_size)
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class NormalText2Image:
def __init__(self, device):
print(f"Initializing NormalText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Normal Map",
description="useful when you want to generate a new real image from both the user description and normal map. "
"like: generate a real image of a object or something from this normal map, "
"or generate a new real image of a object or something from the normal map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
image.save(updated_image_path)
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class VisualQuestionAnswering:
def __init__(self, device):
print(f"Initializing VisualQuestionAnswering to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)
@prompts(name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
"The input to this tool should be a comma separated string of two, representing the image_path and the question")
def inference(self, inputs):
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
raw_image = Image.open(image_path).convert('RGB')
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
f"Output Answer: {answer}")
return answer
class InfinityOutPainting:
template_model = True # Add this line to show this is a template model.
def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
self.llm = OpenAI(temperature=0)
self.ImageCaption = ImageCaptioning
self.ImageEditing = ImageEditing
self.ImageVQA = VisualQuestionAnswering
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
def get_BLIP_vqa(self, image, question):
inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
self.ImageVQA.torch_dtype)
out = self.ImageVQA.model.generate(**inputs)
answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
return answer
def get_BLIP_caption(self, image):
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
self.ImageCaption.torch_dtype)
out = self.ImageCaption.model.generate(**inputs)
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
return BLIP_caption
def check_prompt(self, prompt):
check = f"Here is a paragraph with adjectives. " \
f"{prompt} " \
f"Please change all plural forms in the adjectives to singular forms. "
return self.llm(check)
def get_imagine_caption(self, image, imagine):
BLIP_caption = self.get_BLIP_caption(image)
background_color = self.get_BLIP_vqa(image, 'what is the background color of this image')
style = self.get_BLIP_vqa(image, 'what is the style of this image')
imagine_prompt = f"let's pretend you are an excellent painter and now " \
f"there is an incomplete painting with {BLIP_caption} in the center, " \
f"please imagine the complete painting and describe it" \
f"you should consider the background color is {background_color}, the style is {style}" \
f"You should make the painting as vivid and realistic as possible" \
f"You can not use words like painting or picture" \
f"and you should use no more than 50 words to describe it"
caption = self.llm(imagine_prompt) if imagine else BLIP_caption
caption = self.check_prompt(caption)
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
f'Prompt: {caption}')
return caption
def resize_image(self, image, max_size=1000000, multiple=8):
aspect_ratio = image.size[0] / image.size[1]
new_width = int(math.sqrt(max_size * aspect_ratio))
new_height = int(new_width / aspect_ratio)
new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
return image.resize((new_width, new_height))
def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
old_img = original_img
while (old_img.size != tosize):
prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
crop_w = 15 if old_img.size[0] != tosize[0] else 0
crop_h = 15 if old_img.size[1] != tosize[1] else 0
old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
1])
temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
color="white")
x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
temp_canvas.paste(old_img, (x, y))
temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
height=resized_temp_canvas.height, width=resized_temp_canvas.width,
num_inference_steps=50).images[0].resize(
(temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
image = blend_gt2pt(old_img, image)
old_img = image
return old_img
@prompts(name="Extend An Image",
description="useful when you need to extend an image into a larger image."
"like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
"The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
def inference(self, inputs):
image_path, resolution = inputs.split(',')
width, height = resolution.split('x')
tosize = (int(width), int(height))
image = Image.open(image_path)
image = ImageOps.crop(image, (10, 10, 10, 10))
out_painted_image = self.dowhile(image, tosize, 4, True, False)
# updated_image_path = get_new_image_name(image_path, func_name="outpainting")
updated_image_path = gen_new_name(image_path, f'{type(self).__name__}')
out_painted_image.save(updated_image_path)
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
f"Output Image: {updated_image_path}")
return updated_image_path
##################### New Models #####################
class SegmentAnything:
def __init__(self, device):
print(f"Initializing SegmentAnything to {device}")
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
self.predictor = SamPredictor(self.sam)
self.sam.to(device=device)
self.clicked_region = None
self.img_path = None
@prompts(name="Segment Anything on Image",
description="useful when you want to segment anything in the image. "
"like: segment anything from this image, "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
print("Inputs: ", inputs)
img_path = inputs.strip()
self.img_path = img_path
annos = self.segment_anything(img_path)
full_img, _ = self.show_annos(annos)
# full_img = Image.fromarray(full_img)
# res = Image.fromarray(res)
# print(os.path.splitext(img_path))
seg_all_image_path = gen_new_name(img_path, 'SegmentAnything')
full_img.save(seg_all_image_path, "PNG")
print(f"\nProcessed SegmentAnything, Input Image: {inputs}, Output Depth: {seg_all_image_path}")
return seg_all_image_path
@prompts(name="Segment the Clicked Region",
description="useful when you want to segment the masked region or block in the image. "
"like: segment the masked region in this image, "
"or segment the clicked region in this image, "
"The input to this tool should be None.")
def inference_by_mask(self, inputs=None):
# mask = np.array(Image.open(mask_path).convert('L'))
res_mask = self.segment_by_mask(self.clicked_region)
filaname = gen_new_name(self.img_path, 'SegmentAnything')
mask_img = Image.fromarray(res_mask.astype(np.uint8)*255)
mask_img.save(filaname, "PNG")
return filaname
def segment_by_mask(self, mask=None):
import random
random.seed(GLOBAL_SEED)
if mask is None:
mask = self.clicked_region
idxs = np.nonzero(mask)
# print(idxs)
num_points = min(max(1, int(len(idxs[0]) * 0.01)), 16)
sampled_idx = random.sample(range(0, len(idxs[0])), num_points)
new_mask = []
for i in range(len(idxs)):
new_mask.append(idxs[i][sampled_idx])
points = np.array(new_mask).reshape(2, -1).transpose(1, 0)[:, ::-1]
labels = np.array([1] * num_points)
res_masks, scores, _ = self.predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True,
)
return res_masks[np.argmax(scores), :, :]
def segment_anything(self, img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask_generator = SamAutomaticMaskGenerator(self.sam)
annos = mask_generator.generate(img)
return annos
def get_detection_map(self, img_path):
annos = self.segment_anything(img_path)
_, detection_map = self.show_anns(annos)
return detection_map
def preprocess(self, img, img_path):
self.predictor.set_image(img)
self.img_path = img_path
def reset(self):
self.predictor.reset_image()
self.clicked_region = None
self.img_path = None
def show_annos(self, anns):
# From https://github.com/sail-sg/EditAnything/blob/main/sam2image.py#L91
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann['segmentation']
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img * 255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
full_img = Image.fromarray(np.uint8(full_img))
return full_img, res
def segment_by_points(self, img, points, lables):
# TODO
# masks, _, _ = self.predictor.predict(
# point_coords=np.array(points[-1]),
# point_labels=np.array(lables[-1]),
# # mask_input=mask_input[-1],
# multimask_output=True, # SAM outputs 3 masks, we choose the one with highest score
# )
# # return masks_[np.argmax(scores_), :, :]
# return masks
pass
class RemoveClickedAnything:
"""
prepare:
```
curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
unzip big-lama.zip
```
"""
def __init__(self, device):
print(f"Initializing RemoveClickedAnything to {device}")
self.device=device
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
self.sam.to(device=device)
self.click_point_state = None
@prompts(name="Remove the clicked object",
description="useful when you want to remove an object by clicking in the image. "
"like: remove object by clicking, "
"The input to this tool should be a string, representing the image_path")
def inference_replace(self, inputs):
if self.click_point_state is None:
print(f"The current point state is None, return the input path {inputs}")
return inputs
print("Inputs: ", inputs)
image_path = inputs
img = np.array(Image.open(image_path))
predictor = SamPredictor(self.sam)
predictor.set_image(img)
point_coords = [self.click_point_state]
point_labels = [1]
point_coords = np.array(point_coords)
point_labels = np.array(point_labels)
masks, scores, logits = predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
multimask_output=True,
)
# '''
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10,10))
plt.imshow(img)
show_mask(mask, plt.gca())
show_points(point_coords, point_labels, plt.gca())
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
plt.savefig("show_mask{}.jpg".format(i))
# '''
masks = masks.astype(np.uint8) * 255
masks = [self.dilate_mask(mask) for mask in masks]
imgs = []
for idx, mask in enumerate(masks):
img_inpainted = self.inpaint_img_with_lama(
img, mask, "./lama/configs/prediction/default.yaml", "big-lama")
img_inpainted = img_inpainted.astype(np.uint8)
each = resize_image(img_inpainted, 512)
imgs.append(torch.DoubleTensor(each))
image_list = torch.stack(imgs).permute(0, 3, 1, 2)
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
save_image(image_list, updated_image_path, nrow=3, # requires data type: torch.float64
normalize=True, value_range=(0, 255))
print(f"\nProcessed SegmentAnything, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
def inpaint_img_with_lama(self, img, mask, config_p,
ckpt_p: str="./lama/configs/prediction/default.yaml",
mod=8):
assert len(mask.shape) == 2
if np.max(mask) == 1:
mask = mask * 255
img = torch.from_numpy(img).float().div(255.)
mask = torch.from_numpy(mask).float()
predict_config = OmegaConf.load(config_p)
predict_config.model.path = ckpt_p
device = torch.device(predict_config.device)
train_config_path = os.path.join(
predict_config.model.path, 'config.yaml')
with open(train_config_path, 'r') as f:
train_config = OmegaConf.create(yaml.safe_load(f))
train_config.training_model.predict_only = True
train_config.visualizer.kind = 'noop'
checkpoint_path = os.path.join(
predict_config.model.path, 'models',
predict_config.model.checkpoint
)
model = load_checkpoint(
train_config, checkpoint_path, strict=False, map_location='cpu')
model.freeze()
if not predict_config.get('refine', False):
model.to(device)
batch = {}
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
batch['mask'] = mask[None, None]
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
batch = move_to_device(batch, device)
batch['mask'] = (batch['mask'] > 0) * 1
batch = model(batch)
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
cur_res = cur_res.detach().cpu().numpy()
if unpad_to_size is not None:
orig_height, orig_width = unpad_to_size
cur_res = cur_res[:orig_height, :orig_width]
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
return cur_res
def dilate_mask(self, mask, dilate_factor=15):
# dilate mask
mask = mask.astype(np.uint8)
mask = cv2.dilate(mask, np.ones((15, 15), np.uint8), iterations=1)
return mask
class RemovesMaskedAnything:
"""
prepare:
```
curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
unzip big-lama.zip
```
"""
template_model=True # Add this line to show this is a template model.
def __init__(self, SegmentAnything):
self.SegmentAnything = SegmentAnything
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Remove the masked object",
description="useful when you want to remove an object by masking the region in the image. "
"like: remove object by the masked region"
"The input to this tool should be a comma separated string of two, "
"representing the image_path and seg_path")
def inference_replace(self, inputs):
print("Inputs: ", inputs)
image_path, seg_mask_path = inputs.split(',')
image_path = image_path.strip()
seg_mask_path = seg_mask_path.strip()
img = np.array(Image.open(image_path))
seg_mask = Image.open(seg_mask_path).convert('L')
seg_mask = np.array(seg_mask)
seg_mask = self.dilate_mask(seg_mask)
inpainted_img = self.inpaint_img_with_lama(
img, seg_mask, "./lama/configs/prediction/default.yaml", "big-lama")
inpainted_img_path = gen_new_name(image_path, "RemovesMaskedAnything")
Image.fromarray(inpainted_img).save(inpainted_img_path, 'PNG')
print(f"\nProcessed SegmentAnything, Input Image: {inputs}, Output Image: {inpainted_img_path}")
return inpainted_img_path
def preprocess_img(self, img):
self.SegmentAnything.set_image(img)
def inpaint_img_with_lama(self, img, mask, config_p,
ckpt_p: str="./lama/configs/prediction/default.yaml",
mod=8):
assert len(mask.shape) == 2
if np.max(mask) == 1:
mask = mask * 255
img = torch.from_numpy(img).float().div(255.)
mask = torch.from_numpy(mask).float()
predict_config = OmegaConf.load(config_p)
predict_config.model.path = ckpt_p
device = torch.device(predict_config.device)
train_config_path = os.path.join(
predict_config.model.path, 'config.yaml')
with open(train_config_path, 'r') as f:
train_config = OmegaConf.create(yaml.safe_load(f))
train_config.training_model.predict_only = True
train_config.visualizer.kind = 'noop'
checkpoint_path = os.path.join(
predict_config.model.path, 'models',
predict_config.model.checkpoint
)
model = load_checkpoint(
train_config, checkpoint_path, strict=False, map_location='cpu')
model.freeze()
if not predict_config.get('refine', False):
model.to(device)
batch = {}
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
batch['mask'] = mask[None, None]
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
batch = move_to_device(batch, device)
batch['mask'] = (batch['mask'] > 0) * 1
batch = model(batch)
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
cur_res = cur_res.detach().cpu().numpy()
if unpad_to_size is not None:
orig_height, orig_width = unpad_to_size
cur_res = cur_res[:orig_height, :orig_width]
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
return cur_res
def dilate_mask(self, mask, dilate_factor=15):
# dilate mask
mask = mask.astype(np.uint8)
mask = cv2.dilate(mask, np.ones((15, 15), np.uint8), iterations=1)
return mask
class InpaintMaskedAnything:
"""
prepare:
```
curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
unzip big-lama.zip
```
"""
template_model=True # Add this line to show this is a template model.
def __init__(self, SegmentAnything):
self.SegmentAnything = SegmentAnything
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Inpaint the Masked Object",
description="useful when you want to remove an object by masking the region in the image. "
"like: inpaint the masked region. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and seg_path")
def inference_replace(self, inputs):
print("Inputs: ", inputs)
image_path, seg_mask_path = inputs.split(',')
image_path = image_path.strip()
seg_mask_path = seg_mask_path.strip()
img = np.array(Image.open(image_path))
seg_mask = Image.open(seg_mask_path).convert('L')
seg_mask = np.array(seg_mask)
seg_mask = self.dilate_mask(seg_mask)
inpainted_img = self.inpaint_img_with_lama(
img, seg_mask, "./lama/configs/prediction/default.yaml", "big-lama")
time_stamp = int(time.time())
inpainted_img_path = gen_new_name(image_path, "InpaintMaskedAnything")
Image.fromarray(inpainted_img).save(inpainted_img_path, 'PNG')
print(f"\nProcessed InpaintMaskedAnything, Input Image: {inputs}, Output Image: {inpainted_img_path}")
return inpainted_img_path
def preprocess_img(self, img):
self.SegmentAnything.set_image(img)
def inpaint_img_with_lama(self, img, mask, config_p,
ckpt_p: str="./lama/configs/prediction/default.yaml",
mod=8):
assert len(mask.shape) == 2
if np.max(mask) == 1:
mask = mask * 255
img = torch.from_numpy(img).float().div(255.)
mask = torch.from_numpy(mask).float()
predict_config = OmegaConf.load(config_p)
predict_config.model.path = ckpt_p
device = torch.device(predict_config.device)
train_config_path = os.path.join(
predict_config.model.path, 'config.yaml')
with open(train_config_path, 'r') as f:
train_config = OmegaConf.create(yaml.safe_load(f))
train_config.training_model.predict_only = True
train_config.visualizer.kind = 'noop'
checkpoint_path = os.path.join(
predict_config.model.path, 'models',
predict_config.model.checkpoint
)
model = load_checkpoint(
train_config, checkpoint_path, strict=False, map_location='cpu')
model.freeze()
if not predict_config.get('refine', False):
model.to(device)
batch = {}
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
batch['mask'] = mask[None, None]
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
batch = move_to_device(batch, device)
batch['mask'] = (batch['mask'] > 0) * 1
batch = model(batch)
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
cur_res = cur_res.detach().cpu().numpy()
if unpad_to_size is not None:
orig_height, orig_width = unpad_to_size
cur_res = cur_res[:orig_height, :orig_width]
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
return cur_res
def dilate_mask(self, mask, dilate_factor=15):
# dilate mask
mask = mask.astype(np.uint8)
mask = cv2.dilate(mask, np.ones((15, 15), np.uint8), iterations=1)
return mask
class ExtractMaskedAnything:
template_model=True # Add this line to show this is a template model.
def __init__(self, SegmentAnything):
self.SegmentAnything = SegmentAnything
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
# @prompts(name="Extract the masked anything",
# description="useful when you want to extract the masked region in the image. "
# "like: extract the masked region or keep the masked region in the image. "
# "The input to this tool should be a comma separated string of two, "
# "representing the image_path and mask_path")
@prompts(name="Extract the Masked anything",
description="useful when you want to extract the masked region in the image. "
"like: extract the masked region in the image or "
"keep the masked region in the image. "
"The input to this tool should be a string, "
"representing the image_path")
def inference(self, inputs):
print("Inputs: ", inputs)
image_path = inputs.strip()
seg_mask_path = self.SegmentAnything.inference_by_mask()
# if len(inputs.split(',')) == 1:
# seg_mask_path = self.SegmentAnything.inference_by_mask()
# image_path = inputs.strip()
# else:
# image_path, seg_mask_path = inputs.split(',')
# image_path = image_path.strip()
seg_mask_path = seg_mask_path.strip()
img = np.array(Image.open(image_path).convert("RGB"))
seg_mask = Image.open(seg_mask_path).convert('RGB')
seg_mask = np.array(seg_mask, dtype=np.uint8)
new_img = img * (seg_mask // 255)
print(new_img.shape)
print(seg_mask.shape)
rgba_img = np.concatenate((new_img, seg_mask[:, :, :1]), axis=-1).astype(np.uint8)
rgba_img = Image.fromarray(rgba_img).convert("RGBA")
new_name = gen_new_name(image_path, "ExtractMaskedAnything")
rgba_img.save(new_name, 'PNG')
print(f"\nProcessed ExtractMaskedAnything, Input Image: {inputs}, Output Image: {new_name}")
return new_name
class ReplaceClickedAnything:
def __init__(self, device):
print(f"Initializing ReplaceClickedAnything to {device}")
self.device=device
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
self.sam.to(device=device)
self.click_point_state = None
self.revision = 'fp16' if 'cuda' in device else None
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
@prompts(name="Replace the clicked object",
description="useful when you want to replace an object by clicking in the image. "
"like: replace object by clicking, "
"The input to this tool should be a string, representing the image_path")
def inference_replace(self, inputs):
if self.click_point_state is None:
print(f"The current point state is None, return the input path {inputs}")
return inputs
print("Inputs: ", inputs)
image_path = inputs
img = np.array(Image.open(image_path))
predictor = SamPredictor(self.sam)
predictor.set_image(img)
point_coords = [self.click_point_state]
point_labels = [1]
point_coords = np.array(point_coords)
point_labels = np.array(point_labels)
masks, scores, logits = predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
multimask_output=True,
)
# '''
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10,10))
plt.imshow(img)
show_mask(mask, plt.gca())
show_points(point_coords, point_labels, plt.gca())
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
plt.savefig("show_mask{}.jpg".format(i))
# '''
imgs = []
for mask in masks:
mask_pil = Image.fromarray(mask)
image_pil = Image.fromarray(img)
image_pil = image_pil.resize((512, 512))
mask_pil = mask_pil.resize((512, 512))
each = self.inpaint(prompt='cute dog', image=image_pil, mask_image=mask_pil).images[0]
each = resize_image(np.array(each), 512)
imgs.append(torch.DoubleTensor(each))
image_list = torch.stack(imgs).permute(0, 3, 1, 2)
# updated_image_path = get_new_image_name(inputs, func_name="clickreplace")
updated_image_path = gen_new_name(inputs, f'{type(self).__name__}')
save_image(image_list, updated_image_path, nrow=3, # requires data type: torch.float64
normalize=True, value_range=(0, 255))
print(f"\nProcessed ReplaceClickedAnything, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class ReplaceMaskedAnything:
def __init__(self, device):
print(f"Initializing ReplaceClickedAnything to {device}")
self.device=device
self.revision = 'fp16' if 'cuda' in device else None
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
@prompts(name="Replace the masked object",
description="useful when you want to replace an object by clicking in the image. "
"like: replace the masked object"
"The input to this tool should be a comma separated string of Three, "
"representing the image_path and the seg_path and the prompt")
def inference_replace(self, inputs):
print("Inputs: ", inputs)
image_path, seg_path = inputs.split(',')[:2]
image_path = image_path.strip()
seg_path = seg_path.strip()
prompt = ','.join(inputs.split(',')[2:]).strip()
img = Image.open(image_path)
original_shape = img.size
img = img.resize((512, 512))
seg_img = Image.open(seg_path).convert("L").resize((512, 512))
gen_img = self.inpaint(prompt=prompt, image=img, mask_image=seg_img).images[0]
# gen_img = resize_image(np.array(gen_img), 512)
gen_img = gen_img.resize(original_shape)
gen_img_path = gen_new_name(image_path, 'ReplaceMaskedAnything')
gen_img.save(gen_img_path, 'PNG')
print(f"\nProcessed ReplaceMaskedAnything, Input Image: {inputs}, Output Depth: {gen_img_path}.")
return gen_img_path
class ImageOCRRecognition:
def __init__(self, device):
print(f"Initializing ImageOCRRecognition to {device}")
self.device = device
self.reader = easyocr.Reader(['ch_sim', 'en'], gpu=device) # this needs to run only once to load the model into memory
self.result = None
self.image_path=None
self.clicked_region = None
@prompts(name="recognize the optical characters in the image",
description="useful when you want to recognize the characters or words in the clicked region of image. "
"like: recognize the characters or words in the clicked region."
"The input to this tool should be a comma separated string of two, "
"The input to this tool should be None.")
def inference_by_mask(self, inputs=None):
mask = self.clicked_region
inds =np.where(mask != 0)
coord = []
for ind_per_dim in inds:
coord.append(int(ind_per_dim.mean()))
if self.image_path is None or len(inds[0]) == 0:
# self.result = self.reader.readtext(image_path)
return 'No characters in the image'
# stat = [100, 595] # todo
# reader = easyocr.Reader(['ch_sim', 'en', 'fr', 'it', 'ja', 'ko', 'ru', 'de', 'pt']) # this needs to run only once to load the model into memory
orc_text = self.search((coord[1], coord[0]))
if orc_text is None or len(orc_text) == 0:
orc_text = 'No characters in the image'
print(
f"\nProcessed ImageOCRRecognition, Input Image: {self.image_path}, "
f"Output Text: {orc_text}.")
return orc_text
@prompts(name="recognize all optical characters in the image",
description="useful when you want to recognize all characters or words in the image. "
"like: recognize all characters and words in the image."
"The input to this tool should be a string, "
"representing the image_path.")
def inference(self, inputs):
image_path = inputs.strip()
if self.image_path != image_path:
self.result = self.reader.readtext(image_path)
self.image_path = image_path
# print(self.result)
res_text = []
for item in self.result:
# ([[x, y], [x, y], [x, y], [x, y]], text, confidence)
res_text.append(item[1])
print(
f"\nProcessed ImageOCRRecognition, Input Image: {self.image_path}, "
f"Output Text: {res_text}")
return res_text
def preprocess(self, img, img_path):
self.image_path = img_path
self.result = self.reader.readtext(self.image_path)
def search(self, coord):
for item in self.result:
left_top = item[0][0]
right_bottom=item[0][-2]
if (coord[0] >= left_top[0] and coord[1] >= left_top[1]) and \
(coord[0] <= right_bottom[0] and coord[1] <= right_bottom[1]):
return item[1]
return None
def reset(self):
self.image_path = None
self.result = None
self.mask = None
|