# This program is designed to auto crop the face on a given image # It is required to change the image into gray format to satisfy the pre-trained model requirement import cv2 import numpy as np import os import mediapipe as mp from mediapipe.tasks import python from mediapipe.tasks.python import vision import cv2 from pathlib import Path # auto crop the image in the given dir base_options = python.BaseOptions(model_asset_path='blaze_face_short_range.tflite') options = vision.FaceDetectorOptions(base_options=base_options) detector = vision.FaceDetector.create_from_options(options) def crop( image, detection_result ) -> np.ndarray : annotated_image = image.copy() height, width, _ = image.shape # Here assume we only detect one face for detection in detection_result.detections: # Crop detected face bbox = detection.bounding_box cropped_img = image[bbox.origin_y - 90: bbox.origin_y + bbox.height + 30, bbox.origin_x - 80:bbox.origin_x + bbox.width + 35] return cropped_img def auto_cropping(dir): files = os.listdir(dir) # list of files in directory for file in files: file_dir = Path(dir + "/" + file) abs_path = file_dir.resolve() img = mp.Image.create_from_file(str(abs_path)) detection_result = detector.detect(img) save_path = 'saved' image_copy = np.copy(img.numpy_view()) annotated_image = crop(image_copy, detection_result) rgb_annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) return rgb_annotated_image # auto_cropping("image") # <----------- !!!!change address here!!!! ------------------> # # The current problem (6/2/2023) is that the model may recognize some cartoon face as human face, # my idea is to use another model to classify if the cropped image is real human face