marcotam commited on
Commit
9687104
·
1 Parent(s): b3ad1d2

Upload 2 files

Browse files
Files changed (2) hide show
  1. demo.py +7 -7
  2. similarity_check.py +15 -32
demo.py CHANGED
@@ -61,7 +61,7 @@ def get_face_encoding(path):
61
  # if cv2.waitKey(1) & 0xFF == ord('q'):
62
  # break
63
 
64
-
65
  def process_frame(frame, process_this_frame, face_locations, faces, face_names, score):
66
 
67
  hkid_face_encoding = get_face_encoding("image")
@@ -84,12 +84,12 @@ def process_frame(frame, process_this_frame, face_locations, faces, face_names,
84
  # print(f'frame: {len(frame)}')
85
  # try:
86
  # small_frame = cv2.imread(image_dir)
87
- # small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
88
  # else:
89
  # print('fram has nth')
90
 
91
  # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
92
- rgb_small_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # edited
93
 
94
  # Find all the faces and face encodings in the current frame of video
95
  face_locations = face_recognition.face_locations(rgb_small_frame)
@@ -142,10 +142,10 @@ def process_frame(frame, process_this_frame, face_locations, faces, face_names,
142
 
143
  for (top, right, bottom, left), name in zip(face_locations, face_names):
144
  # Scale back up face locations since the frame we detected in was scaled to 1/4 size
145
- # top *= 4
146
- # right *= 4
147
- # bottom *= 4
148
- # left *= 4
149
 
150
  # Draw a box around the face
151
  cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4)
 
61
  # if cv2.waitKey(1) & 0xFF == ord('q'):
62
  # break
63
 
64
+ # frames are the snapshot of the video
65
  def process_frame(frame, process_this_frame, face_locations, faces, face_names, score):
66
 
67
  hkid_face_encoding = get_face_encoding("image")
 
84
  # print(f'frame: {len(frame)}')
85
  # try:
86
  # small_frame = cv2.imread(image_dir)
87
+ small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
88
  # else:
89
  # print('fram has nth')
90
 
91
  # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
92
+ rgb_small_frame = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
93
 
94
  # Find all the faces and face encodings in the current frame of video
95
  face_locations = face_recognition.face_locations(rgb_small_frame)
 
142
 
143
  for (top, right, bottom, left), name in zip(face_locations, face_names):
144
  # Scale back up face locations since the frame we detected in was scaled to 1/4 size
145
+ top *= 4
146
+ right *= 4
147
+ bottom *= 4
148
+ left *= 4
149
 
150
  # Draw a box around the face
151
  cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4)
similarity_check.py CHANGED
@@ -1,10 +1,10 @@
1
- from model1 import model1
2
- from model2 import model2
3
  import checkTool as ct
4
  import extract_pdf as pf
5
  import extraction_data as ed
6
  import get_chinese_name as cn
7
  import search_engine as se
 
8
 
9
  # get info from hkid card
10
 
@@ -43,29 +43,19 @@ def get_data(img1_path, img2_path):
43
 
44
  # img_fp = 'IMG_4495.jpg'
45
 
46
- info1 = model1(img1_path)
47
- info2 = model2(img1_path)
48
 
49
- def print_info(name, valid_hkid, hkid, issuedate):
50
- print(f'Name: {name}') # name is without space
51
- print(f'HKID: {hkid} and validity: {valid_hkid}')
52
- print(f'Date of issue: {issuedate}')
53
 
54
- cinfo = ct.combine_info(info1, info2)
 
 
55
 
56
  # get info from bank
57
-
58
- # images = r'hangseng_page-0001.jpg'
59
- # bank_list = ['bankofchina','hangsengbank','hsbc','sc']
60
- # image_path = 'hangseng_page-0001.jpg'
61
- # post_url = r''
62
-
63
- # name = pf.get_info_from_bank(img2_path)
64
- # name = pf.check_mr(name)
65
- # name = name.replace(' ', '')
66
- # name = name.lower()
67
-
68
- # data = pf.get_info_from_bank(img2_path, file_name)
69
  data = ed.get_info_from_bank(img2_path)
70
  name = data["nameStatement"]
71
 
@@ -75,24 +65,17 @@ def get_data(img1_path, img2_path):
75
  # img_fp = 'IMG_1234.jpg'
76
  name1 = cinfo[0]
77
  threshold = 85
78
- # print(f'Name in HKID: {name1}')
79
- # print(f'Nmae in bank statement: {name}')
80
  similarity_score = string_similarity(name,name1)
81
- # print(f'Similarity: {similarity_score}')
82
- # if (similarity_score >= threshold): # Above threshold
83
- # print('It is the same person')
84
- # else: # Below threshold
85
- # print('It is not the same person')
86
  data["similarity_score"] = similarity_score
87
  data["name_on_id"] = name1
88
  data["hkid"] = cinfo[2]
89
  data["validity"] = cinfo[1]
90
  data["issue_date"] = cinfo[3]
 
91
 
92
- # Search Engine
 
93
  # chi_name = cn.get_chiname(img1_path)["Chinese Name"]
94
- chi_name = "allen lau"
95
  data["chi_name_id"] = chi_name
96
 
97
- return data
98
-
 
1
+ from model0 import model0
 
2
  import checkTool as ct
3
  import extract_pdf as pf
4
  import extraction_data as ed
5
  import get_chinese_name as cn
6
  import search_engine as se
7
+ import get_chinese_code as cc
8
 
9
  # get info from hkid card
10
 
 
43
 
44
  # img_fp = 'IMG_4495.jpg'
45
 
46
+ # info1 = model1(img1_path)
47
+ # info2 = model2(img1_path)
48
 
49
+ # def print_info(name, valid_hkid, hkid, issuedate):
50
+ # print(f'Name: {name}') # name is without space
51
+ # print(f'HKID: {hkid} and validity: {valid_hkid}')
52
+ # print(f'Date of issue: {issuedate}')
53
 
54
+ # cinfo = ct.combine_info(info1, info2)
55
+ cinfo = model0(img1_path)
56
+ print(cinfo)
57
 
58
  # get info from bank
 
 
 
 
 
 
 
 
 
 
 
 
59
  data = ed.get_info_from_bank(img2_path)
60
  name = data["nameStatement"]
61
 
 
65
  # img_fp = 'IMG_1234.jpg'
66
  name1 = cinfo[0]
67
  threshold = 85
 
 
68
  similarity_score = string_similarity(name,name1)
 
 
 
 
 
69
  data["similarity_score"] = similarity_score
70
  data["name_on_id"] = name1
71
  data["hkid"] = cinfo[2]
72
  data["validity"] = cinfo[1]
73
  data["issue_date"] = cinfo[3]
74
+ data["dateofbirth"] = cinfo[4]
75
 
76
+ # Get chinese name
77
+ chi_name = cc.get_chinese_name(img1_path)
78
  # chi_name = cn.get_chiname(img1_path)["Chinese Name"]
 
79
  data["chi_name_id"] = chi_name
80
 
81
+ return data