Spaces:
Runtime error
Runtime error
File size: 11,055 Bytes
0d3b770 097f973 09b648b 674de7c 6ca1b39 a14002e 674de7c 1146df3 674de7c 5beb9ef 674de7c 0c71419 674de7c 5464361 674de7c 07d605f 744aead 4fdc42e 07d605f ab5426b 674de7c 5464361 ab5426b f335638 5464361 fe19668 674de7c 31ac05c a674250 fe19668 f51df89 fe19668 31ac05c 3cdd434 31ac05c 4fdc42e 31ac05c 097f973 31ac05c d5ef006 74cb3e0 2880c10 fe19668 a2d6739 33565d1 2880c10 a2d6739 2880c10 a2d6739 2880c10 fe19668 2880c10 22f15f2 674de7c 25bee72 674de7c e9b7721 85a22b9 212803e 0d3b770 a14002e c63e932 31ba554 a14002e 618bce3 85a22b9 212803e 85a22b9 98a2e37 1dc77a9 85a22b9 1dc77a9 39fe403 341fdde 39fe403 341fdde a463b89 a14002e a463b89 a14002e deb32c3 22f968f 212803e d099849 6998231 212803e 8eb51bf 013a409 2e26803 013a409 2e26803 d099849 f941ccb d099849 0d3b770 cde5b6e 22f968f 1146df3 22f968f d099849 0d3b770 618bce3 0d3b770 a14002e d099849 1146df3 0d3b770 d9b19b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from textblob import TextBlob
import gradio as gr
import math
import os
os.system("python -m textblob.download_corpora")
control_json={'control':'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ','char':'','leng':62}
string_json={'control':'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMN','char':'OPQRSTUVWXYZ','leng':50}
cont_list=list(string_json['control'])
text="""
I asked Generative AI Models about their context window. Their response was intriguing.
The context window for a large language model (LLM) like OpenAI’s GPT refers to the maximum amount of text the model can consider at any one time when generating a response. This includes both the prompt provided by the user and the model’s generated text.
In practical terms, the context window limits how much previous dialogue the model can “remember” during an interaction. If the interaction exceeds the context window, the model loses access to the earliest parts of the conversation. This limitation can impact the model’s consistency in long conversations or complex tasks.
I asked Generative AI Models about their context window. Their response was intriguing.
The context window for a large language model (LLM) like OpenAI’s GPT refers to the maximum amount of text the model can consider at any one time when generating a response. This includes both the prompt provided by the user and the model’s generated text.
In practical terms, the context window limits how much previous dialogue the model can “remember” during an interaction. If the interaction exceeds the context window, the model loses access to the earliest parts of the conversation. This limitation can impact the model’s consistency in long conversations or complex tasks.
I asked Generative AI Models about their context window. Their response was intriguing.
The context window for a large language model (LLM) like OpenAI’s GPT refers to the maximum amount of text the model can consider at any one time when generating a response. This includes both the prompt provided by the user and the model’s generated text.
In practical terms, the context window limits how much previous dialogue the model can “remember” during an interaction. If the interaction exceeds the context window, the model loses access to the earliest parts of the conversation. This limitation can impact the model’s consistency in long conversations or complex tasks.
I asked Generative AI Models about their context window. Their response was intriguing.
The context window for a large language model (LLM) like OpenAI’s GPT refers to the maximum amount of text the model can consider at any one time when generating a response. This includes both the prompt provided by the user and the model’s generated text.
In practical terms, the context window limits how much previous dialogue the model can “remember” during an interaction. If the interaction exceeds the context window, the model loses access to the earliest parts of the conversation. This limitation can impact the model’s consistency in long conversations or complex tasks.
I asked Generative AI Models about their context window. Their response was intriguing.
The context window for a large language model (LLM) like OpenAI’s GPT refers to the maximum amount of text the model can consider at any one time when generating a response. This includes both the prompt provided by the user and the model’s generated text.
In practical terms, the context window limits how much previous dialogue the model can “remember” during an interaction. If the interaction exceeds the context window, the model loses access to the earliest parts of the conversation. This limitation can impact the model’s consistency in long conversations or complex tasks.
"""
def assign_val(inp, rng, cnt, limit):
if go:
for ea in range(rng):
if go:
noun_list[str(noun)].append(f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}')
if json_object[f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}']=='ZNNN':
a="Y"
b=0
c=0
d=0
if cnt == key_cnt-1:
print('done')
go=False
print(list(json_object.keys())[-1])
else:
cnt+=1
def get_nouns(text=text,steps=1):
control_len=control_json['leng']-steps
control_char=list(control_json['control'][:control_len])
control_val=list(control_json['control'][control_len:])
char_len=len(control_char)
val_len=len(control_val)
print(control_char)
print(control_val)
json_object={}
sen_list=[]
noun_list={}
noun_box=[]
#print(text)
blob = TextBlob(text)
for sentence in blob.sentences:
sen_list.append(str(sentence))
noun_box=[]
for ea in blob.parse().split(" "):
#print(ea)
n=ea.split("/")
if n[1] == "NN":
noun_box.append(n[0])
print(sen_list)
key_cnt=len(sen_list)
noun_cnt=len(noun_box)
print(key_cnt)
print(noun_cnt)
big_cnt=0
cnt=0
go=True
a="Z"
step_allot=char_len**steps
print(step_allot)
div_raw=(step_allot/noun_cnt)
print(div_raw)
div_steps=int(step_allot/noun_cnt)
print(div_steps)
div_remain=div_raw-div_steps
print(div_remain)
steps_mult=div_remain*char_len
#steps_mult=div_remain*char_len
print(steps_mult)
print(math.ceil(steps_mult))
step_list=[]
step_control=""
step_cont_box=[]
for ii in range(steps):
print(ii)
step_cont_box.append("0")
#print (step_cont_box)
pos=len(step_cont_box)-1
if go:
for i, ea in enumerate(noun_box):
if go:
if cnt > char_len:
pos-=1
cnt=0
else:
step_cont_box[pos]=control_char[cnt]
print(step_cont_box)
cnt+=1
big_cnt+=1
if big_cnt==noun_cnt:
print
print("DONE")
go=False
return json_object,noun_list
def get_nouns_OG(text,steps=1):
control_len=control_json['leng']-steps
control_new=control_json['control'][:control_len]
control_char=control_json['control'][control_len:]
print(control_new)
print(control_char)
json_object={}
sen_list=[]
noun_list={}
noun_box=[]
blob = TextBlob(text)
for sentence in blob.sentences:
sen_list.append(str(sentence))
key_cnt=len(sen_list)
cnt=0
go=True
a="Z"
if go:
for ea in range(10):
if go:
for b in range(50):
if go:
for c in range(50):
if go:
for d in range(50):
if go:
blob_n = TextBlob(sen_list[cnt])
noun_p=blob_n.noun_phrases
noun_box=[]
for ea in blob_n.parse().split(" "):
n=ea.split("/")
if n[1] == "NN":
noun_box.append(n[0])
json_object[f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}']={'sentence':sen_list[cnt],'noun_phrase':noun_p,'nouns':noun_box}
for noun in noun_p:
if noun in list(noun_list.keys()):
noun_list[str(noun)].append(f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}')
else:
noun_list[str(noun)]=[f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}']
for nn in noun_box:
if nn in list(noun_list.keys()):
noun_list[str(nn)].append(f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}')
else:
noun_list[str(nn)]=[f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}']
if json_object[f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}']=='ZNNN':
a="Y"
b=0
c=0
d=0
if json_object[f'{a}{cont_list[b]}{cont_list[c]}{cont_list[d]}']=='YNNN':
a="X"
b=0
c=0
d=0
if cnt == key_cnt-1:
print('done')
go=False
print(list(json_object.keys())[-1])
else:
cnt+=1
return json_object,noun_list
def find_query(query,sen,nouns):
blob_f = TextBlob(query)
noun_box={}
noun_list=[]
sen_box=[]
for ea in blob_f.parse().split(" "):
n=ea.split("/")
if n[1] == "NN":
noun_list.append(n[0])
nouns_l=list(nouns.keys())
for nn in nouns_l:
for nl in noun_list:
if nl in nn:
if nl in noun_box:
for ea_n in nouns[nn]:
noun_box[str(nl)].append(ea_n)
else:
noun_box[str(nl)]=[]
for ea_n in nouns[nn]:
noun_box[str(nl)].append(ea_n)
for ea in noun_box.values():
for vals in ea:
sen_box.append(sen[vals]['sentence'])
return noun_box,sen_box
with gr.Blocks() as app:
inp = gr.Textbox(label="Paste Text",value=text,lines=10)
btn = gr.Button("Load Document")
with gr.Row():
query=gr.Textbox(label="Search query")
search_btn=gr.Button("Search")
steps=gr.Number(value=1)
out_box=gr.Textbox(label="Results")
sen_box=gr.Textbox(label="Sentences")
with gr.Row():
with gr.Column(scale=2):
sen=gr.JSON(label="Sentences")
with gr.Column(scale=1):
nouns=gr.JSON(label="Nouns")
search_btn.click(find_query,[query,sen,nouns],[out_box,sen_box])
btn.click(get_nouns,[inp,steps],[sen,nouns])
app.launch()
|