Olive_Whisper_ASR / download.py
sam2ai's picture
Synced repo using 'sync_with_huggingface' Github Action
6de3e11
import argparse
import requests
import os
from tqdm import tqdm
def download_file(url, path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 #1 Kbyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
def download_model(model_name, destination_folder="models"):
# Define the base URL and headers for the Hugging Face API
base_url = f"https://huggingface.co/{model_name}/resolve/main"
headers = {"User-Agent": "Hugging Face Python"}
# Send a GET request to the Hugging Face API to get a list of all files
response = requests.get(f"https://huggingface.co/api/models/{model_name}", headers=headers)
response.raise_for_status()
# Extract the list of files from the response JSON
files_to_download = [file["rfilename"] for file in response.json()["siblings"]]
# Ensure the directory exists
os.makedirs(f"{destination_folder}/{model_name}", exist_ok=True)
# Download each file
for file in files_to_download:
print(f"Downloading {file}...")
download_file(f"{base_url}/{file}", f"{destination_folder}/{model_name}/{file}")
if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("model_name", type=str, default="sam2ai/whisper-odia-small-finetune-int8-ct2", help="Name of the model to download.")
# args = parser.parse_args()
download_model("sam2ai/whisper-odia-small-finetune-int8-ct2")