Spaces:
Runtime error
Runtime error
JustinLin610
commited on
Commit
·
204969e
1
Parent(s):
945769d
add files
Browse files- chinese.jpg +0 -0
- ezocr/build/lib/easyocrlite/__init__.py +1 -0
- ezocr/build/lib/easyocrlite/reader.py +272 -0
- ezocr/build/lib/easyocrlite/types.py +5 -0
- lihe.png +0 -0
- paibian.jpeg +0 -0
- shupai.png +0 -0
- zuowen.jpg +0 -0
chinese.jpg
ADDED
ezocr/build/lib/easyocrlite/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from easyocrlite.reader import ReaderLite
|
ezocr/build/lib/easyocrlite/reader.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Tuple
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from PIL import Image, ImageEnhance
|
12 |
+
|
13 |
+
from easyocrlite.model import CRAFT
|
14 |
+
|
15 |
+
from easyocrlite.utils.download_utils import prepare_model
|
16 |
+
from easyocrlite.utils.image_utils import (
|
17 |
+
adjust_result_coordinates,
|
18 |
+
boxed_transform,
|
19 |
+
normalize_mean_variance,
|
20 |
+
resize_aspect_ratio,
|
21 |
+
)
|
22 |
+
from easyocrlite.utils.detect_utils import (
|
23 |
+
extract_boxes,
|
24 |
+
extract_regions_from_boxes,
|
25 |
+
box_expand,
|
26 |
+
greedy_merge,
|
27 |
+
)
|
28 |
+
from easyocrlite.types import BoxTuple, RegionTuple
|
29 |
+
import easyocrlite.utils.utils as utils
|
30 |
+
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
MODULE_PATH = (
|
34 |
+
os.environ.get("EASYOCR_MODULE_PATH")
|
35 |
+
or os.environ.get("MODULE_PATH")
|
36 |
+
or os.path.expanduser("~/.EasyOCR/")
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
class ReaderLite(object):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
gpu=True,
|
44 |
+
model_storage_directory=None,
|
45 |
+
download_enabled=True,
|
46 |
+
verbose=True,
|
47 |
+
quantize=True,
|
48 |
+
cudnn_benchmark=False,
|
49 |
+
):
|
50 |
+
|
51 |
+
self.verbose = verbose
|
52 |
+
|
53 |
+
model_storage_directory = Path(
|
54 |
+
model_storage_directory
|
55 |
+
if model_storage_directory
|
56 |
+
else MODULE_PATH + "/model"
|
57 |
+
)
|
58 |
+
self.detector_path = prepare_model(
|
59 |
+
model_storage_directory, download_enabled, verbose
|
60 |
+
)
|
61 |
+
|
62 |
+
self.quantize = quantize
|
63 |
+
self.cudnn_benchmark = cudnn_benchmark
|
64 |
+
if gpu is False:
|
65 |
+
self.device = "cpu"
|
66 |
+
if verbose:
|
67 |
+
logger.warning(
|
68 |
+
"Using CPU. Note: This module is much faster with a GPU."
|
69 |
+
)
|
70 |
+
elif not torch.cuda.is_available():
|
71 |
+
self.device = "cpu"
|
72 |
+
if verbose:
|
73 |
+
logger.warning(
|
74 |
+
"CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU."
|
75 |
+
)
|
76 |
+
elif gpu is True:
|
77 |
+
self.device = "cuda"
|
78 |
+
else:
|
79 |
+
self.device = gpu
|
80 |
+
|
81 |
+
self.detector = CRAFT()
|
82 |
+
|
83 |
+
state_dict = torch.load(self.detector_path, map_location=self.device)
|
84 |
+
if list(state_dict.keys())[0].startswith("module"):
|
85 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
86 |
+
|
87 |
+
self.detector.load_state_dict(state_dict)
|
88 |
+
|
89 |
+
if self.device == "cpu":
|
90 |
+
if self.quantize:
|
91 |
+
try:
|
92 |
+
torch.quantization.quantize_dynamic(
|
93 |
+
self.detector, dtype=torch.qint8, inplace=True
|
94 |
+
)
|
95 |
+
except:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
self.detector = torch.nn.DataParallel(self.detector).to(self.device)
|
99 |
+
import torch.backends.cudnn as cudnn
|
100 |
+
|
101 |
+
cudnn.benchmark = self.cudnn_benchmark
|
102 |
+
|
103 |
+
self.detector.eval()
|
104 |
+
|
105 |
+
def process(
|
106 |
+
self,
|
107 |
+
image_path: str,
|
108 |
+
max_size: int = 960,
|
109 |
+
expand_ratio: float = 1.0,
|
110 |
+
sharp: float = 1.0,
|
111 |
+
contrast: float = 1.0,
|
112 |
+
text_confidence: float = 0.7,
|
113 |
+
text_threshold: float = 0.4,
|
114 |
+
link_threshold: float = 0.4,
|
115 |
+
slope_ths: float = 0.1,
|
116 |
+
ratio_ths: float = 0.5,
|
117 |
+
center_ths: float = 0.5,
|
118 |
+
dim_ths: float = 0.5,
|
119 |
+
space_ths: float = 1.0,
|
120 |
+
add_margin: float = 0.1,
|
121 |
+
min_size: float = 0.01,
|
122 |
+
) -> Tuple[BoxTuple, list[np.ndarray]]:
|
123 |
+
|
124 |
+
image = Image.open(image_path).convert('RGB')
|
125 |
+
|
126 |
+
tensor, inverse_ratio = self.preprocess(
|
127 |
+
image, max_size, expand_ratio, sharp, contrast
|
128 |
+
)
|
129 |
+
|
130 |
+
scores = self.forward_net(tensor)
|
131 |
+
|
132 |
+
boxes = self.detect(scores, text_confidence, text_threshold, link_threshold)
|
133 |
+
|
134 |
+
image = np.array(image)
|
135 |
+
region_list, box_list = self.postprocess(
|
136 |
+
image,
|
137 |
+
boxes,
|
138 |
+
inverse_ratio,
|
139 |
+
slope_ths,
|
140 |
+
ratio_ths,
|
141 |
+
center_ths,
|
142 |
+
dim_ths,
|
143 |
+
space_ths,
|
144 |
+
add_margin,
|
145 |
+
min_size,
|
146 |
+
)
|
147 |
+
|
148 |
+
# get cropped image
|
149 |
+
image_list = []
|
150 |
+
for region in region_list:
|
151 |
+
x_min, x_max, y_min, y_max = region
|
152 |
+
crop_img = image[y_min:y_max, x_min:x_max, :]
|
153 |
+
image_list.append(
|
154 |
+
(
|
155 |
+
((x_min, y_min), (x_max, y_min), (x_max, y_max), (x_min, y_max)),
|
156 |
+
crop_img,
|
157 |
+
)
|
158 |
+
)
|
159 |
+
|
160 |
+
for box in box_list:
|
161 |
+
transformed_img = boxed_transform(image, np.array(box, dtype="float32"))
|
162 |
+
image_list.append((box, transformed_img))
|
163 |
+
|
164 |
+
# sort by top left point
|
165 |
+
image_list = sorted(image_list, key=lambda x: (x[0][0][1], x[0][0][0]))
|
166 |
+
|
167 |
+
return image_list
|
168 |
+
|
169 |
+
def preprocess(
|
170 |
+
self,
|
171 |
+
image: Image.Image,
|
172 |
+
max_size: int,
|
173 |
+
expand_ratio: float = 1.0,
|
174 |
+
sharp: float = 1.0,
|
175 |
+
contrast: float = 1.0,
|
176 |
+
) -> torch.Tensor:
|
177 |
+
if sharp != 1:
|
178 |
+
enhancer = ImageEnhance.Sharpness(image)
|
179 |
+
image = enhancer.enhance(sharp)
|
180 |
+
if contrast != 1:
|
181 |
+
enhancer = ImageEnhance.Contrast(image)
|
182 |
+
image = enhancer.enhance(contrast)
|
183 |
+
|
184 |
+
image = np.array(image)
|
185 |
+
|
186 |
+
image, target_ratio = resize_aspect_ratio(
|
187 |
+
image, max_size, interpolation=cv2.INTER_LINEAR, expand_ratio=expand_ratio
|
188 |
+
)
|
189 |
+
inverse_ratio = 1 / target_ratio
|
190 |
+
|
191 |
+
x = np.transpose(normalize_mean_variance(image), (2, 0, 1))
|
192 |
+
|
193 |
+
x = torch.tensor(np.array([x]), device=self.device)
|
194 |
+
|
195 |
+
return x, inverse_ratio
|
196 |
+
|
197 |
+
@torch.no_grad()
|
198 |
+
def forward_net(self, tensor: torch.Tensor) -> torch.Tensor:
|
199 |
+
scores, feature = self.detector(tensor)
|
200 |
+
return scores[0]
|
201 |
+
|
202 |
+
def detect(
|
203 |
+
self,
|
204 |
+
scores: torch.Tensor,
|
205 |
+
text_confidence: float = 0.7,
|
206 |
+
text_threshold: float = 0.4,
|
207 |
+
link_threshold: float = 0.4,
|
208 |
+
) -> list[BoxTuple]:
|
209 |
+
# make score and link map
|
210 |
+
score_text = scores[:, :, 0].cpu().data.numpy()
|
211 |
+
score_link = scores[:, :, 1].cpu().data.numpy()
|
212 |
+
# extract box
|
213 |
+
boxes, _ = extract_boxes(
|
214 |
+
score_text, score_link, text_confidence, text_threshold, link_threshold
|
215 |
+
)
|
216 |
+
return boxes
|
217 |
+
|
218 |
+
def postprocess(
|
219 |
+
self,
|
220 |
+
image: np.ndarray,
|
221 |
+
boxes: list[BoxTuple],
|
222 |
+
inverse_ratio: float,
|
223 |
+
slope_ths: float = 0.1,
|
224 |
+
ratio_ths: float = 0.5,
|
225 |
+
center_ths: float = 0.5,
|
226 |
+
dim_ths: float = 0.5,
|
227 |
+
space_ths: float = 1.0,
|
228 |
+
add_margin: float = 0.1,
|
229 |
+
min_size: int = 0,
|
230 |
+
) -> Tuple[list[RegionTuple], list[BoxTuple]]:
|
231 |
+
|
232 |
+
# coordinate adjustment
|
233 |
+
boxes = adjust_result_coordinates(boxes, inverse_ratio)
|
234 |
+
|
235 |
+
max_y, max_x, _ = image.shape
|
236 |
+
|
237 |
+
# extract region and merge
|
238 |
+
region_list, box_list = extract_regions_from_boxes(boxes, slope_ths)
|
239 |
+
|
240 |
+
region_list = greedy_merge(
|
241 |
+
region_list,
|
242 |
+
ratio_ths=ratio_ths,
|
243 |
+
center_ths=center_ths,
|
244 |
+
dim_ths=dim_ths,
|
245 |
+
space_ths=space_ths,
|
246 |
+
verbose=0
|
247 |
+
)
|
248 |
+
|
249 |
+
# add margin
|
250 |
+
region_list = [
|
251 |
+
region.expand(add_margin, (max_x, max_y)).as_tuple()
|
252 |
+
for region in region_list
|
253 |
+
]
|
254 |
+
|
255 |
+
box_list = [box_expand(box, add_margin, (max_x, max_y)) for box in box_list]
|
256 |
+
|
257 |
+
# filter by size
|
258 |
+
if min_size:
|
259 |
+
if min_size < 1:
|
260 |
+
min_size = int(min(max_y, max_x) * min_size)
|
261 |
+
|
262 |
+
region_list = [
|
263 |
+
i for i in region_list if max(i[1] - i[0], i[3] - i[2]) > min_size
|
264 |
+
]
|
265 |
+
box_list = [
|
266 |
+
i
|
267 |
+
for i in box_list
|
268 |
+
if max(utils.diff([c[0] for c in i]), utils.diff([c[1] for c in i]))
|
269 |
+
> min_size
|
270 |
+
]
|
271 |
+
|
272 |
+
return region_list, box_list
|
ezocr/build/lib/easyocrlite/types.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
Point = Tuple[int, int]
|
4 |
+
BoxTuple = Tuple[Point, Point, Point, Point]
|
5 |
+
RegionTuple = Tuple[int, int, int, int]
|
lihe.png
ADDED
paibian.jpeg
ADDED
shupai.png
ADDED
zuowen.jpg
ADDED