JustinLin610 commited on
Commit
204969e
·
1 Parent(s): 945769d
chinese.jpg ADDED
ezocr/build/lib/easyocrlite/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from easyocrlite.reader import ReaderLite
ezocr/build/lib/easyocrlite/reader.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+ import os
5
+ from pathlib import Path
6
+ from typing import Tuple
7
+
8
+ import cv2
9
+ import numpy as np
10
+ import torch
11
+ from PIL import Image, ImageEnhance
12
+
13
+ from easyocrlite.model import CRAFT
14
+
15
+ from easyocrlite.utils.download_utils import prepare_model
16
+ from easyocrlite.utils.image_utils import (
17
+ adjust_result_coordinates,
18
+ boxed_transform,
19
+ normalize_mean_variance,
20
+ resize_aspect_ratio,
21
+ )
22
+ from easyocrlite.utils.detect_utils import (
23
+ extract_boxes,
24
+ extract_regions_from_boxes,
25
+ box_expand,
26
+ greedy_merge,
27
+ )
28
+ from easyocrlite.types import BoxTuple, RegionTuple
29
+ import easyocrlite.utils.utils as utils
30
+
31
+ logger = logging.getLogger(__name__)
32
+
33
+ MODULE_PATH = (
34
+ os.environ.get("EASYOCR_MODULE_PATH")
35
+ or os.environ.get("MODULE_PATH")
36
+ or os.path.expanduser("~/.EasyOCR/")
37
+ )
38
+
39
+
40
+ class ReaderLite(object):
41
+ def __init__(
42
+ self,
43
+ gpu=True,
44
+ model_storage_directory=None,
45
+ download_enabled=True,
46
+ verbose=True,
47
+ quantize=True,
48
+ cudnn_benchmark=False,
49
+ ):
50
+
51
+ self.verbose = verbose
52
+
53
+ model_storage_directory = Path(
54
+ model_storage_directory
55
+ if model_storage_directory
56
+ else MODULE_PATH + "/model"
57
+ )
58
+ self.detector_path = prepare_model(
59
+ model_storage_directory, download_enabled, verbose
60
+ )
61
+
62
+ self.quantize = quantize
63
+ self.cudnn_benchmark = cudnn_benchmark
64
+ if gpu is False:
65
+ self.device = "cpu"
66
+ if verbose:
67
+ logger.warning(
68
+ "Using CPU. Note: This module is much faster with a GPU."
69
+ )
70
+ elif not torch.cuda.is_available():
71
+ self.device = "cpu"
72
+ if verbose:
73
+ logger.warning(
74
+ "CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU."
75
+ )
76
+ elif gpu is True:
77
+ self.device = "cuda"
78
+ else:
79
+ self.device = gpu
80
+
81
+ self.detector = CRAFT()
82
+
83
+ state_dict = torch.load(self.detector_path, map_location=self.device)
84
+ if list(state_dict.keys())[0].startswith("module"):
85
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
86
+
87
+ self.detector.load_state_dict(state_dict)
88
+
89
+ if self.device == "cpu":
90
+ if self.quantize:
91
+ try:
92
+ torch.quantization.quantize_dynamic(
93
+ self.detector, dtype=torch.qint8, inplace=True
94
+ )
95
+ except:
96
+ pass
97
+ else:
98
+ self.detector = torch.nn.DataParallel(self.detector).to(self.device)
99
+ import torch.backends.cudnn as cudnn
100
+
101
+ cudnn.benchmark = self.cudnn_benchmark
102
+
103
+ self.detector.eval()
104
+
105
+ def process(
106
+ self,
107
+ image_path: str,
108
+ max_size: int = 960,
109
+ expand_ratio: float = 1.0,
110
+ sharp: float = 1.0,
111
+ contrast: float = 1.0,
112
+ text_confidence: float = 0.7,
113
+ text_threshold: float = 0.4,
114
+ link_threshold: float = 0.4,
115
+ slope_ths: float = 0.1,
116
+ ratio_ths: float = 0.5,
117
+ center_ths: float = 0.5,
118
+ dim_ths: float = 0.5,
119
+ space_ths: float = 1.0,
120
+ add_margin: float = 0.1,
121
+ min_size: float = 0.01,
122
+ ) -> Tuple[BoxTuple, list[np.ndarray]]:
123
+
124
+ image = Image.open(image_path).convert('RGB')
125
+
126
+ tensor, inverse_ratio = self.preprocess(
127
+ image, max_size, expand_ratio, sharp, contrast
128
+ )
129
+
130
+ scores = self.forward_net(tensor)
131
+
132
+ boxes = self.detect(scores, text_confidence, text_threshold, link_threshold)
133
+
134
+ image = np.array(image)
135
+ region_list, box_list = self.postprocess(
136
+ image,
137
+ boxes,
138
+ inverse_ratio,
139
+ slope_ths,
140
+ ratio_ths,
141
+ center_ths,
142
+ dim_ths,
143
+ space_ths,
144
+ add_margin,
145
+ min_size,
146
+ )
147
+
148
+ # get cropped image
149
+ image_list = []
150
+ for region in region_list:
151
+ x_min, x_max, y_min, y_max = region
152
+ crop_img = image[y_min:y_max, x_min:x_max, :]
153
+ image_list.append(
154
+ (
155
+ ((x_min, y_min), (x_max, y_min), (x_max, y_max), (x_min, y_max)),
156
+ crop_img,
157
+ )
158
+ )
159
+
160
+ for box in box_list:
161
+ transformed_img = boxed_transform(image, np.array(box, dtype="float32"))
162
+ image_list.append((box, transformed_img))
163
+
164
+ # sort by top left point
165
+ image_list = sorted(image_list, key=lambda x: (x[0][0][1], x[0][0][0]))
166
+
167
+ return image_list
168
+
169
+ def preprocess(
170
+ self,
171
+ image: Image.Image,
172
+ max_size: int,
173
+ expand_ratio: float = 1.0,
174
+ sharp: float = 1.0,
175
+ contrast: float = 1.0,
176
+ ) -> torch.Tensor:
177
+ if sharp != 1:
178
+ enhancer = ImageEnhance.Sharpness(image)
179
+ image = enhancer.enhance(sharp)
180
+ if contrast != 1:
181
+ enhancer = ImageEnhance.Contrast(image)
182
+ image = enhancer.enhance(contrast)
183
+
184
+ image = np.array(image)
185
+
186
+ image, target_ratio = resize_aspect_ratio(
187
+ image, max_size, interpolation=cv2.INTER_LINEAR, expand_ratio=expand_ratio
188
+ )
189
+ inverse_ratio = 1 / target_ratio
190
+
191
+ x = np.transpose(normalize_mean_variance(image), (2, 0, 1))
192
+
193
+ x = torch.tensor(np.array([x]), device=self.device)
194
+
195
+ return x, inverse_ratio
196
+
197
+ @torch.no_grad()
198
+ def forward_net(self, tensor: torch.Tensor) -> torch.Tensor:
199
+ scores, feature = self.detector(tensor)
200
+ return scores[0]
201
+
202
+ def detect(
203
+ self,
204
+ scores: torch.Tensor,
205
+ text_confidence: float = 0.7,
206
+ text_threshold: float = 0.4,
207
+ link_threshold: float = 0.4,
208
+ ) -> list[BoxTuple]:
209
+ # make score and link map
210
+ score_text = scores[:, :, 0].cpu().data.numpy()
211
+ score_link = scores[:, :, 1].cpu().data.numpy()
212
+ # extract box
213
+ boxes, _ = extract_boxes(
214
+ score_text, score_link, text_confidence, text_threshold, link_threshold
215
+ )
216
+ return boxes
217
+
218
+ def postprocess(
219
+ self,
220
+ image: np.ndarray,
221
+ boxes: list[BoxTuple],
222
+ inverse_ratio: float,
223
+ slope_ths: float = 0.1,
224
+ ratio_ths: float = 0.5,
225
+ center_ths: float = 0.5,
226
+ dim_ths: float = 0.5,
227
+ space_ths: float = 1.0,
228
+ add_margin: float = 0.1,
229
+ min_size: int = 0,
230
+ ) -> Tuple[list[RegionTuple], list[BoxTuple]]:
231
+
232
+ # coordinate adjustment
233
+ boxes = adjust_result_coordinates(boxes, inverse_ratio)
234
+
235
+ max_y, max_x, _ = image.shape
236
+
237
+ # extract region and merge
238
+ region_list, box_list = extract_regions_from_boxes(boxes, slope_ths)
239
+
240
+ region_list = greedy_merge(
241
+ region_list,
242
+ ratio_ths=ratio_ths,
243
+ center_ths=center_ths,
244
+ dim_ths=dim_ths,
245
+ space_ths=space_ths,
246
+ verbose=0
247
+ )
248
+
249
+ # add margin
250
+ region_list = [
251
+ region.expand(add_margin, (max_x, max_y)).as_tuple()
252
+ for region in region_list
253
+ ]
254
+
255
+ box_list = [box_expand(box, add_margin, (max_x, max_y)) for box in box_list]
256
+
257
+ # filter by size
258
+ if min_size:
259
+ if min_size < 1:
260
+ min_size = int(min(max_y, max_x) * min_size)
261
+
262
+ region_list = [
263
+ i for i in region_list if max(i[1] - i[0], i[3] - i[2]) > min_size
264
+ ]
265
+ box_list = [
266
+ i
267
+ for i in box_list
268
+ if max(utils.diff([c[0] for c in i]), utils.diff([c[1] for c in i]))
269
+ > min_size
270
+ ]
271
+
272
+ return region_list, box_list
ezocr/build/lib/easyocrlite/types.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ Point = Tuple[int, int]
4
+ BoxTuple = Tuple[Point, Point, Point, Point]
5
+ RegionTuple = Tuple[int, int, int, int]
lihe.png ADDED
paibian.jpeg ADDED
shupai.png ADDED
zuowen.jpg ADDED