""" A standalone PyTorch implementation for fast and efficient bicubic resampling. The resulting values are the same to MATLAB function imresize('bicubic'). ## Author: Sanghyun Son ## Email: sonsang35@gmail.com (primary), thstkdgus35@snu.ac.kr (secondary) ## Version: 1.2.0 ## Last update: July 9th, 2020 (KST) Dependency: torch Example:: >>> import torch >>> import core >>> x = torch.arange(16).float().view(1, 1, 4, 4) >>> y = core.imresize(x, sizes=(3, 3)) >>> print(y) tensor([[[[ 0.7506, 2.1004, 3.4503], [ 6.1505, 7.5000, 8.8499], [11.5497, 12.8996, 14.2494]]]]) """ import math import typing import torch from torch.nn import functional as F __all__ = ['imresize'] _I = typing.Optional[int] _D = typing.Optional[torch.dtype] def nearest_contribution(x: torch.Tensor) -> torch.Tensor: range_around_0 = torch.logical_and(x.gt(-0.5), x.le(0.5)) cont = range_around_0.to(dtype=x.dtype) return cont def linear_contribution(x: torch.Tensor) -> torch.Tensor: ax = x.abs() range_01 = ax.le(1) cont = (1 - ax) * range_01.to(dtype=x.dtype) return cont def cubic_contribution(x: torch.Tensor, a: float = -0.5) -> torch.Tensor: ax = x.abs() ax2 = ax * ax ax3 = ax * ax2 range_01 = ax.le(1) range_12 = torch.logical_and(ax.gt(1), ax.le(2)) cont_01 = (a + 2) * ax3 - (a + 3) * ax2 + 1 cont_01 = cont_01 * range_01.to(dtype=x.dtype) cont_12 = (a * ax3) - (5 * a * ax2) + (8 * a * ax) - (4 * a) cont_12 = cont_12 * range_12.to(dtype=x.dtype) cont = cont_01 + cont_12 return cont def gaussian_contribution(x: torch.Tensor, sigma: float = 2.0) -> torch.Tensor: range_3sigma = (x.abs() <= 3 * sigma + 1) # Normalization will be done after cont = torch.exp(-x.pow(2) / (2 * sigma**2)) cont = cont * range_3sigma.to(dtype=x.dtype) return cont def discrete_kernel(kernel: str, scale: float, antialiasing: bool = True) -> torch.Tensor: ''' For downsampling with integer scale only. ''' downsampling_factor = int(1 / scale) if kernel == 'cubic': kernel_size_orig = 4 else: raise ValueError('Pass!') if antialiasing: kernel_size = kernel_size_orig * downsampling_factor else: kernel_size = kernel_size_orig if downsampling_factor % 2 == 0: a = kernel_size_orig * (0.5 - 1 / (2 * kernel_size)) else: kernel_size -= 1 a = kernel_size_orig * (0.5 - 1 / (kernel_size + 1)) with torch.no_grad(): r = torch.linspace(-a, a, steps=kernel_size) k = cubic_contribution(r).view(-1, 1) k = torch.matmul(k, k.t()) k /= k.sum() return k def reflect_padding(x: torch.Tensor, dim: int, pad_pre: int, pad_post: int) -> torch.Tensor: ''' Apply reflect padding to the given Tensor. Note that it is slightly different from the PyTorch functional.pad, where boundary elements are used only once. Instead, we follow the MATLAB implementation which uses boundary elements twice. For example, [a, b, c, d] would become [b, a, b, c, d, c] with the PyTorch implementation, while our implementation yields [a, a, b, c, d, d]. ''' b, c, h, w = x.size() if dim == 2 or dim == -2: padding_buffer = x.new_zeros(b, c, h + pad_pre + pad_post, w) padding_buffer[..., pad_pre:(h + pad_pre), :].copy_(x) for p in range(pad_pre): padding_buffer[..., pad_pre - p - 1, :].copy_(x[..., p, :]) for p in range(pad_post): padding_buffer[..., h + pad_pre + p, :].copy_(x[..., -(p + 1), :]) else: padding_buffer = x.new_zeros(b, c, h, w + pad_pre + pad_post) padding_buffer[..., pad_pre:(w + pad_pre)].copy_(x) for p in range(pad_pre): padding_buffer[..., pad_pre - p - 1].copy_(x[..., p]) for p in range(pad_post): padding_buffer[..., w + pad_pre + p].copy_(x[..., -(p + 1)]) return padding_buffer def padding(x: torch.Tensor, dim: int, pad_pre: int, pad_post: int, padding_type: typing.Optional[str] = 'reflect') -> torch.Tensor: if padding_type is None: return x elif padding_type == 'reflect': x_pad = reflect_padding(x, dim, pad_pre, pad_post) else: raise ValueError('{} padding is not supported!'.format(padding_type)) return x_pad def get_padding(base: torch.Tensor, kernel_size: int, x_size: int) -> typing.Tuple[int, int, torch.Tensor]: base = base.long() r_min = base.min() r_max = base.max() + kernel_size - 1 if r_min <= 0: pad_pre = -r_min pad_pre = pad_pre.item() base += pad_pre else: pad_pre = 0 if r_max >= x_size: pad_post = r_max - x_size + 1 pad_post = pad_post.item() else: pad_post = 0 return pad_pre, pad_post, base def get_weight(dist: torch.Tensor, kernel_size: int, kernel: str = 'cubic', sigma: float = 2.0, antialiasing_factor: float = 1) -> torch.Tensor: buffer_pos = dist.new_zeros(kernel_size, len(dist)) for idx, buffer_sub in enumerate(buffer_pos): buffer_sub.copy_(dist - idx) # Expand (downsampling) / Shrink (upsampling) the receptive field. buffer_pos *= antialiasing_factor if kernel == 'cubic': weight = cubic_contribution(buffer_pos) elif kernel == 'gaussian': weight = gaussian_contribution(buffer_pos, sigma=sigma) else: raise ValueError('{} kernel is not supported!'.format(kernel)) weight /= weight.sum(dim=0, keepdim=True) return weight def reshape_tensor(x: torch.Tensor, dim: int, kernel_size: int) -> torch.Tensor: # Resize height if dim == 2 or dim == -2: k = (kernel_size, 1) h_out = x.size(-2) - kernel_size + 1 w_out = x.size(-1) # Resize width else: k = (1, kernel_size) h_out = x.size(-2) w_out = x.size(-1) - kernel_size + 1 unfold = F.unfold(x, k) unfold = unfold.view(unfold.size(0), -1, h_out, w_out) return unfold def reshape_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _I, _I, int, int]: if x.dim() == 4: b, c, h, w = x.size() elif x.dim() == 3: c, h, w = x.size() b = None elif x.dim() == 2: h, w = x.size() b = c = None else: raise ValueError('{}-dim Tensor is not supported!'.format(x.dim())) x = x.view(-1, 1, h, w) return x, b, c, h, w def reshape_output(x: torch.Tensor, b: _I, c: _I) -> torch.Tensor: rh = x.size(-2) rw = x.size(-1) # Back to the original dimension if b is not None: x = x.view(b, c, rh, rw) # 4-dim else: if c is not None: x = x.view(c, rh, rw) # 3-dim else: x = x.view(rh, rw) # 2-dim return x def cast_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _D]: if x.dtype != torch.float32 or x.dtype != torch.float64: dtype = x.dtype x = x.float() else: dtype = None return x, dtype def cast_output(x: torch.Tensor, dtype: _D) -> torch.Tensor: if dtype is not None: if not dtype.is_floating_point: x = x - x.detach() + x.round() # To prevent over/underflow when converting types if dtype is torch.uint8: x = x.clamp(0, 255) x = x.to(dtype=dtype) return x def resize_1d(x: torch.Tensor, dim: int, size: int, scale: float, kernel: str = 'cubic', sigma: float = 2.0, padding_type: str = 'reflect', antialiasing: bool = True) -> torch.Tensor: ''' Args: x (torch.Tensor): A torch.Tensor of dimension (B x C, 1, H, W). dim (int): scale (float): size (int): Return: ''' # Identity case if scale == 1: return x # Default bicubic kernel with antialiasing (only when downsampling) if kernel == 'cubic': kernel_size = 4 else: kernel_size = math.floor(6 * sigma) if antialiasing and (scale < 1): antialiasing_factor = scale kernel_size = math.ceil(kernel_size / antialiasing_factor) else: antialiasing_factor = 1 # We allow margin to both sizes kernel_size += 2 # Weights only depend on the shape of input and output, # so we do not calculate gradients here. with torch.no_grad(): pos = torch.linspace( 0, size - 1, steps=size, dtype=x.dtype, device=x.device, ) pos = (pos + 0.5) / scale - 0.5 base = pos.floor() - (kernel_size // 2) + 1 dist = pos - base weight = get_weight( dist, kernel_size, kernel=kernel, sigma=sigma, antialiasing_factor=antialiasing_factor, ) pad_pre, pad_post, base = get_padding(base, kernel_size, x.size(dim)) # To backpropagate through x x_pad = padding(x, dim, pad_pre, pad_post, padding_type=padding_type) unfold = reshape_tensor(x_pad, dim, kernel_size) # Subsampling first if dim == 2 or dim == -2: sample = unfold[..., base, :] weight = weight.view(1, kernel_size, sample.size(2), 1) else: sample = unfold[..., base] weight = weight.view(1, kernel_size, 1, sample.size(3)) # Apply the kernel x = sample * weight x = x.sum(dim=1, keepdim=True) return x def downsampling_2d(x: torch.Tensor, k: torch.Tensor, scale: int, padding_type: str = 'reflect') -> torch.Tensor: c = x.size(1) k_h = k.size(-2) k_w = k.size(-1) k = k.to(dtype=x.dtype, device=x.device) k = k.view(1, 1, k_h, k_w) k = k.repeat(c, c, 1, 1) e = torch.eye(c, dtype=k.dtype, device=k.device, requires_grad=False) e = e.view(c, c, 1, 1) k = k * e pad_h = (k_h - scale) // 2 pad_w = (k_w - scale) // 2 x = padding(x, -2, pad_h, pad_h, padding_type=padding_type) x = padding(x, -1, pad_w, pad_w, padding_type=padding_type) y = F.conv2d(x, k, padding=0, stride=scale) return y def imresize(x: torch.Tensor, scale: typing.Optional[float] = None, sizes: typing.Optional[typing.Tuple[int, int]] = None, kernel: typing.Union[str, torch.Tensor] = 'cubic', sigma: float = 2, rotation_degree: float = 0, padding_type: str = 'reflect', antialiasing: bool = True) -> torch.Tensor: """ Args: x (torch.Tensor): scale (float): sizes (tuple(int, int)): kernel (str, default='cubic'): sigma (float, default=2): rotation_degree (float, default=0): padding_type (str, default='reflect'): antialiasing (bool, default=True): Return: torch.Tensor: """ if scale is None and sizes is None: raise ValueError('One of scale or sizes must be specified!') if scale is not None and sizes is not None: raise ValueError('Please specify scale or sizes to avoid conflict!') x, b, c, h, w = reshape_input(x) if sizes is None and scale is not None: ''' # Check if we can apply the convolution algorithm scale_inv = 1 / scale if isinstance(kernel, str) and scale_inv.is_integer(): kernel = discrete_kernel(kernel, scale, antialiasing=antialiasing) elif isinstance(kernel, torch.Tensor) and not scale_inv.is_integer(): raise ValueError( 'An integer downsampling factor ' 'should be used with a predefined kernel!' ) ''' # Determine output size sizes = (math.ceil(h * scale), math.ceil(w * scale)) scales = (scale, scale) if scale is None and sizes is not None: scales = (sizes[0] / h, sizes[1] / w) x, dtype = cast_input(x) if isinstance(kernel, str) and sizes is not None: # Core resizing module x = resize_1d( x, -2, size=sizes[0], scale=scales[0], kernel=kernel, sigma=sigma, padding_type=padding_type, antialiasing=antialiasing) x = resize_1d( x, -1, size=sizes[1], scale=scales[1], kernel=kernel, sigma=sigma, padding_type=padding_type, antialiasing=antialiasing) elif isinstance(kernel, torch.Tensor) and scale is not None: x = downsampling_2d(x, kernel, scale=int(1 / scale)) x = reshape_output(x, b, c) x = cast_output(x, dtype) return x