# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...utils import is_torch_version, logging from ..attention import BasicTransformerBlock from ..attention_processor import Attention, AttentionProcessor, FusedAttnProcessor2_0 from ..embeddings import PatchEmbed, PixArtAlphaTextProjection from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormSingle logger = logging.get_logger(__name__) # pylint: disable=invalid-name class PixArtTransformer2DModel(ModelMixin, ConfigMixin): r""" A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426, https://arxiv.org/abs/2403.04692). Parameters: num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (int, optional, defaults to 72): The number of channels in each head. in_channels (int, defaults to 4): The number of channels in the input. out_channels (int, optional): The number of channels in the output. Specify this parameter if the output channel number differs from the input. num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. norm_num_groups (int, optional, defaults to 32): Number of groups for group normalization within Transformer blocks. cross_attention_dim (int, optional): The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension. attention_bias (bool, optional, defaults to True): Configure if the Transformer blocks' attention should contain a bias parameter. sample_size (int, defaults to 128): The width of the latent images. This parameter is fixed during training. patch_size (int, defaults to 2): Size of the patches the model processes, relevant for architectures working on non-sequential data. activation_fn (str, optional, defaults to "gelu-approximate"): Activation function to use in feed-forward networks within Transformer blocks. num_embeds_ada_norm (int, optional, defaults to 1000): Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference. upcast_attention (bool, optional, defaults to False): If true, upcasts the attention mechanism dimensions for potentially improved performance. norm_type (str, optional, defaults to "ada_norm_zero"): Specifies the type of normalization used, can be 'ada_norm_zero'. norm_elementwise_affine (bool, optional, defaults to False): If true, enables element-wise affine parameters in the normalization layers. norm_eps (float, optional, defaults to 1e-6): A small constant added to the denominator in normalization layers to prevent division by zero. interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings. use_additional_conditions (bool, optional): If we're using additional conditions as inputs. attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used. caption_channels (int, optional, defaults to None): Number of channels to use for projecting the caption embeddings. use_linear_projection (bool, optional, defaults to False): Deprecated argument. Will be removed in a future version. num_vector_embeds (bool, optional, defaults to False): Deprecated argument. Will be removed in a future version. """ _supports_gradient_checkpointing = True _no_split_modules = ["BasicTransformerBlock", "PatchEmbed"] @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 72, in_channels: int = 4, out_channels: Optional[int] = 8, num_layers: int = 28, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = 1152, attention_bias: bool = True, sample_size: int = 128, patch_size: int = 2, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_single", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, use_additional_conditions: Optional[bool] = None, caption_channels: Optional[int] = None, attention_type: Optional[str] = "default", ): super().__init__() # Validate inputs. if norm_type != "ada_norm_single": raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # Set some common variables used across the board. self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels if use_additional_conditions is None: if sample_size == 128: use_additional_conditions = True else: use_additional_conditions = False self.use_additional_conditions = use_additional_conditions self.gradient_checkpointing = False # 2. Initialize the position embedding and transformer blocks. self.height = self.config.sample_size self.width = self.config.sample_size interpolation_scale = ( self.config.interpolation_scale if self.config.interpolation_scale is not None else max(self.config.sample_size // 64, 1) ) self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type, ) for _ in range(self.config.num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) self.adaln_single = AdaLayerNormSingle( self.inner_dim, use_additional_conditions=self.use_additional_conditions ) self.caption_projection = None if self.config.caption_channels is not None: self.caption_projection = PixArtAlphaTextProjection( in_features=self.config.caption_channels, hidden_size=self.inner_dim ) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ The [`PixArtTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep (`torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if self.use_additional_conditions and added_cond_kwargs is None: raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.") # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size = hidden_states.shape[0] height, width = ( hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size, ) hidden_states = self.pos_embed(hidden_states) timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) if self.caption_projection is not None: encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) # 2. Blocks for block in self.transformer_blocks: if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, None, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=None, ) # 3. Output shift, scale = ( self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # unpatchify hidden_states = hidden_states.reshape( shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)