Spaces:
Sleeping
Sleeping
pivot-prompt
commited on
Commit
·
660daa9
1
Parent(s):
cd8d52a
Add application file
Browse files- app.py +193 -0
- ims/aloha.png +0 -0
- ims/parking.jpg +0 -0
- ims/robot.png +0 -0
- ims/tools.png +0 -0
- requirements.txt +6 -0
- vip.py +397 -0
- vip_runner.py +153 -0
- vip_utils.py +122 -0
- vlms.py +33 -0
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PIVOT Demo."""
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from vip_runner import vip_runner
|
6 |
+
from vlms import GPT4V
|
7 |
+
|
8 |
+
# Adjust radius of annotations based on size of the image
|
9 |
+
radius_per_pixel = 0.05
|
10 |
+
|
11 |
+
|
12 |
+
def run_vip(
|
13 |
+
im,
|
14 |
+
query,
|
15 |
+
n_samples_init,
|
16 |
+
n_samples_opt,
|
17 |
+
n_iters,
|
18 |
+
n_parallel_trials,
|
19 |
+
openai_api_key,
|
20 |
+
progress=gr.Progress(track_tqdm=False),
|
21 |
+
):
|
22 |
+
|
23 |
+
if not openai_api_key:
|
24 |
+
return [], 'Must provide OpenAI API Key'
|
25 |
+
if im is None:
|
26 |
+
return [], 'Must specify image'
|
27 |
+
if not query:
|
28 |
+
return [], 'Must specify description'
|
29 |
+
|
30 |
+
img_size = np.min(im.shape[:2])
|
31 |
+
print(int(img_size * radius_per_pixel))
|
32 |
+
# add some action spec
|
33 |
+
style = {
|
34 |
+
'num_samples': 12,
|
35 |
+
'circle_alpha': 0.6,
|
36 |
+
'alpha': 0.8,
|
37 |
+
'arrow_alpha': 0.0,
|
38 |
+
'radius': int(img_size * radius_per_pixel),
|
39 |
+
'thickness': 2,
|
40 |
+
'fontsize': int(img_size * radius_per_pixel),
|
41 |
+
'rgb_scale': 255,
|
42 |
+
'focal_offset': 1, # camera distance / std of action in z
|
43 |
+
}
|
44 |
+
|
45 |
+
action_spec = {
|
46 |
+
'loc': [0, 0, 0],
|
47 |
+
'scale': [0.0, 100, 100],
|
48 |
+
'min_scale': [0.0, 30, 30],
|
49 |
+
'min': [0, -300.0, -300],
|
50 |
+
'max': [0, 300, 300],
|
51 |
+
'action_to_coord': 250,
|
52 |
+
'robot': None,
|
53 |
+
}
|
54 |
+
|
55 |
+
vlm = GPT4V(openai_api_key=openai_api_key)
|
56 |
+
vip_gen = vip_runner(
|
57 |
+
vlm,
|
58 |
+
im,
|
59 |
+
query,
|
60 |
+
style,
|
61 |
+
action_spec,
|
62 |
+
n_samples_init=n_samples_init,
|
63 |
+
n_samples_opt=n_samples_opt,
|
64 |
+
n_iters=n_iters,
|
65 |
+
n_parallel_trials=n_parallel_trials,
|
66 |
+
)
|
67 |
+
for rst in vip_gen:
|
68 |
+
yield rst
|
69 |
+
|
70 |
+
|
71 |
+
examples = [
|
72 |
+
{
|
73 |
+
'im_path': 'ims/aloha.png',
|
74 |
+
'desc': 'a point between the fork and the cup',
|
75 |
+
},
|
76 |
+
{
|
77 |
+
'im_path': 'ims/robot.png',
|
78 |
+
'desc': 'the toy in the middle of the table',
|
79 |
+
},
|
80 |
+
{
|
81 |
+
'im_path': 'ims/parking.jpg',
|
82 |
+
'desc': 'a place to park if I am handicapped',
|
83 |
+
},
|
84 |
+
{
|
85 |
+
'im_path': 'ims/tools.png',
|
86 |
+
'desc': 'what should I use pull a nail'
|
87 |
+
},
|
88 |
+
]
|
89 |
+
|
90 |
+
|
91 |
+
with gr.Blocks() as demo:
|
92 |
+
gr.Markdown("""
|
93 |
+
# PIVOT: Prompting with Iterative Visual Optimization
|
94 |
+
The demo below showcases a version of the PIVOT algorithm, which uses iterative visual prompts to optimize and guide the reasoning of Vision-Langauge-Models (VLMs).
|
95 |
+
Given an image and a description of an object or region,
|
96 |
+
PIVOT iteratively searches for the point in the image that best corresponds to the description.
|
97 |
+
This is done through visual prompting, where instead of reasoning with text, the VLM reasons over images annotated with sampled points,
|
98 |
+
in order to pick the best points.
|
99 |
+
In each iteration, we take the points previously selected by the VLM, resample new points around the their mean, and repeat the process.
|
100 |
+
|
101 |
+
To get started, you can use the provided example image and query pairs, or
|
102 |
+
upload your own images.
|
103 |
+
This demo uses GPT-4V, so it requires an OpenAI API key.
|
104 |
+
|
105 |
+
Hyperparameters to set:
|
106 |
+
* N Samples for Initialization - how many initial points are sampled for the first PIVOT iteration.
|
107 |
+
* N Samples for Optimiazation - how many points are sampled for subsequent iterations.
|
108 |
+
* N Iterations - how many optimization iterations to perform.
|
109 |
+
* N Ensemble Recursions - how many ensembles for recursive PIVOT.
|
110 |
+
|
111 |
+
Note that each iteration takes about ~10s, and each additional ensemble adds a multiple number of N Iterations.
|
112 |
+
|
113 |
+
After PIVOT finishes, the image gallery below will visualize PIVOT results throughout all the iterations.
|
114 |
+
There are two images for each iteration - the first one shows all the sampled points, and the second one shows which one PIVOT picked.
|
115 |
+
The Info textbox will show the final selected pixel coordinate that PIVOT converged to.
|
116 |
+
|
117 |
+
**To use the example images, right click on the image -> copy image, then click the clipboard icon in the Input Image box.**
|
118 |
+
""".strip())
|
119 |
+
|
120 |
+
gr.Markdown(
|
121 |
+
'## Example Images and Queries\n Drag images into the image box below (Try safari on Mac if dragging does not work)'
|
122 |
+
)
|
123 |
+
with gr.Row(equal_height=True):
|
124 |
+
for example in examples:
|
125 |
+
gr.Image(value=example['im_path'], type='numpy', label=example['desc'])
|
126 |
+
|
127 |
+
gr.Markdown('## New Query')
|
128 |
+
with gr.Row():
|
129 |
+
with gr.Column():
|
130 |
+
inp_im = gr.Image(
|
131 |
+
label='Input Image',
|
132 |
+
type='numpy',
|
133 |
+
show_label=True,
|
134 |
+
value=examples[0]['im_path'],
|
135 |
+
)
|
136 |
+
inp_query = gr.Textbox(
|
137 |
+
label='Description',
|
138 |
+
lines=1,
|
139 |
+
placeholder=examples[0]['desc'],
|
140 |
+
)
|
141 |
+
|
142 |
+
with gr.Column():
|
143 |
+
inp_openai_api_key = gr.Textbox(
|
144 |
+
label='OpenAI API Key (not saved)', lines=1
|
145 |
+
)
|
146 |
+
with gr.Group():
|
147 |
+
inp_n_samples_init = gr.Slider(
|
148 |
+
label='N Samples for Initialization',
|
149 |
+
minimum=10,
|
150 |
+
maximum=40,
|
151 |
+
value=25,
|
152 |
+
step=1,
|
153 |
+
)
|
154 |
+
inp_n_samples_opt = gr.Slider(
|
155 |
+
label='N Samples for Optimization',
|
156 |
+
minimum=3,
|
157 |
+
maximum=20,
|
158 |
+
value=10,
|
159 |
+
step=1,
|
160 |
+
)
|
161 |
+
inp_n_iters = gr.Slider(
|
162 |
+
label='N Iterations', minimum=1, maximum=5, value=3, step=1
|
163 |
+
)
|
164 |
+
inp_n_parallel_trials = gr.Slider(
|
165 |
+
label='N Parallel Trials', minimum=1, maximum=3, value=1, step=1
|
166 |
+
)
|
167 |
+
btn_run = gr.Button('Run')
|
168 |
+
|
169 |
+
with gr.Group():
|
170 |
+
out_ims = gr.Gallery(
|
171 |
+
label='Images with Sampled and Chosen Points',
|
172 |
+
columns=4,
|
173 |
+
rows=1,
|
174 |
+
interactive=False,
|
175 |
+
object_fit="contain", height="auto"
|
176 |
+
)
|
177 |
+
out_info = gr.Textbox(label='Info', lines=1)
|
178 |
+
|
179 |
+
btn_run.click(
|
180 |
+
run_vip,
|
181 |
+
inputs=[
|
182 |
+
inp_im,
|
183 |
+
inp_query,
|
184 |
+
inp_n_samples_init,
|
185 |
+
inp_n_samples_opt,
|
186 |
+
inp_n_iters,
|
187 |
+
inp_n_parallel_trials,
|
188 |
+
inp_openai_api_key,
|
189 |
+
],
|
190 |
+
outputs=[out_ims, out_info],
|
191 |
+
)
|
192 |
+
|
193 |
+
demo.launch()
|
ims/aloha.png
ADDED
ims/parking.jpg
ADDED
ims/robot.png
ADDED
ims/tools.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
matplotlib
|
3 |
+
opencv-python
|
4 |
+
openai
|
5 |
+
gradio
|
6 |
+
scipy
|
vip.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Visual Iterative Prompting functions.
|
2 |
+
|
3 |
+
Code to implement visual iterative prompting, an approach for querying VLMs.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import dataclasses
|
8 |
+
import enum
|
9 |
+
import io
|
10 |
+
from typing import Optional, Tuple
|
11 |
+
import cv2
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import numpy as np
|
14 |
+
import scipy.stats
|
15 |
+
import vip_utils
|
16 |
+
|
17 |
+
|
18 |
+
@enum.unique
|
19 |
+
class SupportedEmbodiments(str, enum.Enum):
|
20 |
+
"""Embodiments supported by VIP."""
|
21 |
+
|
22 |
+
HF_DEMO = 'hf_demo'
|
23 |
+
|
24 |
+
|
25 |
+
@dataclasses.dataclass()
|
26 |
+
class Coordinate:
|
27 |
+
"""Coordinate with necessary information for visualizing annotation."""
|
28 |
+
|
29 |
+
# 2D image coordinates for the target annotation
|
30 |
+
xy: Tuple[int, int]
|
31 |
+
# Color and style of the coord.
|
32 |
+
color: Optional[float] = None
|
33 |
+
radius: Optional[int] = None
|
34 |
+
|
35 |
+
|
36 |
+
@dataclasses.dataclass()
|
37 |
+
class Sample:
|
38 |
+
"""Single Sample mapping actions to Coordinates."""
|
39 |
+
|
40 |
+
# 2D or 3D action
|
41 |
+
action: np.ndarray
|
42 |
+
# Coordinates for the main annotation
|
43 |
+
coord: Coordinate
|
44 |
+
# Coordinates for the text label
|
45 |
+
text_coord: Coordinate
|
46 |
+
# Label to display in the text label
|
47 |
+
label: str
|
48 |
+
|
49 |
+
|
50 |
+
class VisualIterativePrompter:
|
51 |
+
"""Visual Iterative Prompting class."""
|
52 |
+
|
53 |
+
def __init__(self, style, action_spec, embodiment):
|
54 |
+
self.embodiment = embodiment
|
55 |
+
self.style = style
|
56 |
+
self.action_spec = action_spec
|
57 |
+
self.fig_scale_size = None
|
58 |
+
# image preparer
|
59 |
+
# robot_to_image_canonical_coords
|
60 |
+
|
61 |
+
def action_to_coord(self, action, image, arm_xy, do_project=False):
|
62 |
+
"""Converts candidate action to image coordinate."""
|
63 |
+
return self.navigation_action_to_coord(
|
64 |
+
action=action, image=image, center_xy=arm_xy, do_project=do_project
|
65 |
+
)
|
66 |
+
|
67 |
+
def navigation_action_to_coord(
|
68 |
+
self, action, image, center_xy, do_project=False
|
69 |
+
):
|
70 |
+
"""Converts a ZXY or XY action to an image coordinate.
|
71 |
+
|
72 |
+
Conversion is done based on style['focal_offset'] and action_spec['scale'].
|
73 |
+
|
74 |
+
Args:
|
75 |
+
action: z, y, x action in robot action space
|
76 |
+
image: image
|
77 |
+
center_xy: x, y in image space
|
78 |
+
do_project: whether or not to project actions sampled outside the image to
|
79 |
+
the edge of the image
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
Dict coordinate with image x, y, arrow color, and circle radius.
|
83 |
+
"""
|
84 |
+
if self.action_spec['scale'][0] == 0: # no z dimension
|
85 |
+
norm_action = [
|
86 |
+
(action[d] - self.action_spec['loc'][d])
|
87 |
+
/ (2 * self.action_spec['scale'][d])
|
88 |
+
for d in range(1, 3)
|
89 |
+
]
|
90 |
+
norm_action_y, norm_action_x = norm_action
|
91 |
+
norm_action_z = 0
|
92 |
+
else:
|
93 |
+
norm_action = [
|
94 |
+
(action[d] - self.action_spec['loc'][d])
|
95 |
+
/ (2 * self.action_spec['scale'][d])
|
96 |
+
for d in range(3)
|
97 |
+
]
|
98 |
+
norm_action_z, norm_action_y, norm_action_x = norm_action
|
99 |
+
focal_length = np.max([
|
100 |
+
0.2, # positive focal lengths only
|
101 |
+
self.style['focal_offset']
|
102 |
+
/ (self.style['focal_offset'] + norm_action_z),
|
103 |
+
])
|
104 |
+
image_x = center_xy[0] - (
|
105 |
+
self.action_spec['action_to_coord'] * norm_action_x * focal_length
|
106 |
+
)
|
107 |
+
image_y = center_xy[1] - (
|
108 |
+
self.action_spec['action_to_coord'] * norm_action_y * focal_length
|
109 |
+
)
|
110 |
+
if (
|
111 |
+
vip_utils.coord_outside_image(
|
112 |
+
Coordinate(xy=(image_x, image_y)), image, self.style['radius']
|
113 |
+
)
|
114 |
+
and do_project
|
115 |
+
):
|
116 |
+
# project the arrow to the edge of the image if too large
|
117 |
+
height, width, _ = image.shape
|
118 |
+
max_x = (
|
119 |
+
width - center_xy[0] - 2 * self.style['radius']
|
120 |
+
if norm_action_x < 0
|
121 |
+
else center_xy[0] - 2 * self.style['radius']
|
122 |
+
)
|
123 |
+
max_y = (
|
124 |
+
height - center_xy[1] - 2 * self.style['radius']
|
125 |
+
if norm_action_y < 0
|
126 |
+
else center_xy[1] - 2 * self.style['radius']
|
127 |
+
)
|
128 |
+
rescale_ratio = min(
|
129 |
+
np.abs([
|
130 |
+
max_x / (self.action_spec['action_to_coord'] * norm_action_x),
|
131 |
+
max_y / (self.action_spec['action_to_coord'] * norm_action_y),
|
132 |
+
])
|
133 |
+
)
|
134 |
+
image_x = (
|
135 |
+
center_xy[0]
|
136 |
+
- self.action_spec['action_to_coord'] * norm_action_x * rescale_ratio
|
137 |
+
)
|
138 |
+
image_y = (
|
139 |
+
center_xy[1]
|
140 |
+
- self.action_spec['action_to_coord'] * norm_action_y * rescale_ratio
|
141 |
+
)
|
142 |
+
|
143 |
+
return Coordinate(
|
144 |
+
xy=(int(image_x), int(image_y)),
|
145 |
+
color=0.1 * self.style['rgb_scale'],
|
146 |
+
radius=int(self.style['radius']),
|
147 |
+
)
|
148 |
+
|
149 |
+
def sample_actions(
|
150 |
+
self, image, arm_xy, loc, scale, true_action=None, max_itrs=1000
|
151 |
+
):
|
152 |
+
"""Sample actions from distribution.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
image: image
|
156 |
+
arm_xy: x, y in image space of arm
|
157 |
+
loc: action distribution mean to sample from
|
158 |
+
scale: action distribution variance to sample from
|
159 |
+
true_action: action taken in demonstration if available
|
160 |
+
max_itrs: number of tries to get a valid sample
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
samples: Samples with associated actions, coords, text_coords, labels.
|
164 |
+
"""
|
165 |
+
image = copy.deepcopy(image)
|
166 |
+
|
167 |
+
samples = []
|
168 |
+
actions = []
|
169 |
+
coords = []
|
170 |
+
text_coords = []
|
171 |
+
labels = []
|
172 |
+
|
173 |
+
# Keep track of oracle action if available.
|
174 |
+
true_label = None
|
175 |
+
if true_action is not None:
|
176 |
+
actions.append(true_action)
|
177 |
+
coord = self.action_to_coord(true_action, image, arm_xy)
|
178 |
+
coords.append(coord)
|
179 |
+
text_coords.append(
|
180 |
+
vip_utils.coord_to_text_coord(coords[-1], arm_xy, coord.radius)
|
181 |
+
)
|
182 |
+
true_label = np.random.randint(self.style['num_samples'])
|
183 |
+
# labels.append(str(true_label) + '*')
|
184 |
+
labels.append(str(true_label))
|
185 |
+
|
186 |
+
# Generate all action samples.
|
187 |
+
for i in range(self.style['num_samples']):
|
188 |
+
if i == true_label:
|
189 |
+
continue
|
190 |
+
itrs = 0
|
191 |
+
|
192 |
+
# Generate action scaled appropriately.
|
193 |
+
action = np.clip(
|
194 |
+
np.random.normal(loc, scale),
|
195 |
+
self.action_spec['min'],
|
196 |
+
self.action_spec['max'],
|
197 |
+
)
|
198 |
+
|
199 |
+
# Convert sampled action to image coordinates.
|
200 |
+
coord = self.action_to_coord(action, image, arm_xy)
|
201 |
+
|
202 |
+
# Resample action if it results in invalid image annotation.
|
203 |
+
adjusted_scale = np.array(scale)
|
204 |
+
while (
|
205 |
+
vip_utils.is_invalid_coord(
|
206 |
+
coord, coords, self.style['radius'] * 1.5, image
|
207 |
+
)
|
208 |
+
or vip_utils.coord_outside_image(coord, image, self.style['radius'])
|
209 |
+
) and itrs < max_itrs:
|
210 |
+
action = np.clip(
|
211 |
+
np.random.normal(loc, adjusted_scale),
|
212 |
+
self.action_spec['min'],
|
213 |
+
self.action_spec['max'],
|
214 |
+
)
|
215 |
+
coord = self.action_to_coord(action, image, arm_xy)
|
216 |
+
itrs += 1
|
217 |
+
# increase sampling range slightly if not finding a good sample
|
218 |
+
adjusted_scale *= 1.1
|
219 |
+
if itrs == max_itrs:
|
220 |
+
# If the final iteration results in invalid annotation, just clip
|
221 |
+
# to edge of image.
|
222 |
+
coord = self.action_to_coord(action, image, arm_xy, do_project=True)
|
223 |
+
|
224 |
+
# Compute image coordinates of text labels.
|
225 |
+
radius = coord.radius
|
226 |
+
text_coord = Coordinate(
|
227 |
+
xy=vip_utils.coord_to_text_coord(coord, arm_xy, radius)
|
228 |
+
)
|
229 |
+
|
230 |
+
actions.append(action)
|
231 |
+
coords.append(coord)
|
232 |
+
text_coords.append(text_coord)
|
233 |
+
labels.append(str(i))
|
234 |
+
|
235 |
+
for i in range(len(actions)):
|
236 |
+
sample = Sample(
|
237 |
+
action=actions[i],
|
238 |
+
coord=coords[i],
|
239 |
+
text_coord=text_coords[i],
|
240 |
+
label=str(i),
|
241 |
+
)
|
242 |
+
samples.append(sample)
|
243 |
+
return samples
|
244 |
+
|
245 |
+
def add_arrow_overlay_plt(self, image, samples, arm_xy):
|
246 |
+
"""Add arrows and circles to the image.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
image: image
|
250 |
+
samples: Samples to visualize.
|
251 |
+
arm_xy: x, y image coordinates for EEF center.
|
252 |
+
log_image: Boolean for whether to save to CNS.
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
image: image with visual prompts.
|
256 |
+
"""
|
257 |
+
# Add transparent arrows and circles
|
258 |
+
overlay = image.copy()
|
259 |
+
(original_image_height, original_image_width, _) = image.shape
|
260 |
+
|
261 |
+
white = (
|
262 |
+
self.style['rgb_scale'],
|
263 |
+
self.style['rgb_scale'],
|
264 |
+
self.style['rgb_scale'],
|
265 |
+
)
|
266 |
+
|
267 |
+
# Add arrows.
|
268 |
+
for sample in samples:
|
269 |
+
color = sample.coord.color
|
270 |
+
cv2.arrowedLine(
|
271 |
+
overlay, arm_xy, sample.coord.xy, color, self.style['thickness']
|
272 |
+
)
|
273 |
+
image = cv2.addWeighted(
|
274 |
+
overlay,
|
275 |
+
self.style['arrow_alpha'],
|
276 |
+
image,
|
277 |
+
1 - self.style['arrow_alpha'],
|
278 |
+
0,
|
279 |
+
)
|
280 |
+
|
281 |
+
overlay = image.copy()
|
282 |
+
# Add circles.
|
283 |
+
for sample in samples:
|
284 |
+
color = sample.coord.color
|
285 |
+
radius = sample.coord.radius
|
286 |
+
cv2.circle(
|
287 |
+
overlay,
|
288 |
+
sample.text_coord.xy,
|
289 |
+
radius,
|
290 |
+
color,
|
291 |
+
self.style['thickness'] + 1,
|
292 |
+
)
|
293 |
+
cv2.circle(overlay, sample.text_coord.xy, radius, white, -1)
|
294 |
+
image = cv2.addWeighted(
|
295 |
+
overlay,
|
296 |
+
self.style['circle_alpha'],
|
297 |
+
image,
|
298 |
+
1 - self.style['circle_alpha'],
|
299 |
+
0,
|
300 |
+
)
|
301 |
+
|
302 |
+
dpi = plt.rcParams['figure.dpi']
|
303 |
+
if self.fig_scale_size is None:
|
304 |
+
# test saving a figure to decide size for text figure
|
305 |
+
fig_size = (original_image_width / dpi, original_image_height / dpi)
|
306 |
+
plt.subplots(1, figsize=fig_size)
|
307 |
+
plt.imshow(image, cmap='binary')
|
308 |
+
plt.axis('off')
|
309 |
+
fig = plt.gcf()
|
310 |
+
fig.tight_layout(pad=0)
|
311 |
+
buf = io.BytesIO()
|
312 |
+
plt.savefig(buf, format='png')
|
313 |
+
plt.close()
|
314 |
+
buf.seek(0)
|
315 |
+
test_image = cv2.imdecode(
|
316 |
+
np.frombuffer(buf.getvalue(), dtype=np.uint8), cv2.IMREAD_COLOR
|
317 |
+
)
|
318 |
+
self.fig_scale_size = original_image_width / test_image.shape[1]
|
319 |
+
|
320 |
+
# Add text to figure.
|
321 |
+
fig_size = (
|
322 |
+
self.fig_scale_size * original_image_width / dpi,
|
323 |
+
self.fig_scale_size * original_image_height / dpi,
|
324 |
+
)
|
325 |
+
plt.subplots(1, figsize=fig_size)
|
326 |
+
plt.imshow(image, cmap='binary')
|
327 |
+
for sample in samples:
|
328 |
+
plt.text(
|
329 |
+
sample.text_coord.xy[0],
|
330 |
+
sample.text_coord.xy[1],
|
331 |
+
sample.label,
|
332 |
+
ha='center',
|
333 |
+
va='center',
|
334 |
+
color='k',
|
335 |
+
fontsize=self.style['fontsize'],
|
336 |
+
)
|
337 |
+
|
338 |
+
# Compile image.
|
339 |
+
plt.axis('off')
|
340 |
+
fig = plt.gcf()
|
341 |
+
fig.tight_layout(pad=0)
|
342 |
+
buf = io.BytesIO()
|
343 |
+
plt.savefig(buf, format='png')
|
344 |
+
plt.close()
|
345 |
+
image = cv2.imdecode(
|
346 |
+
np.frombuffer(buf.getvalue(), dtype=np.uint8), cv2.IMREAD_COLOR
|
347 |
+
)
|
348 |
+
|
349 |
+
image = cv2.resize(image, (original_image_width, original_image_height))
|
350 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
351 |
+
|
352 |
+
return image
|
353 |
+
|
354 |
+
def fit(self, values, samples):
|
355 |
+
"""Fit a loc and scale to selected actions.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
values: list of selected labels
|
359 |
+
samples: list of all Samples
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
loc: mean of selected distribution
|
363 |
+
scale: variance of selected distribution
|
364 |
+
"""
|
365 |
+
actions = [sample.action for sample in samples]
|
366 |
+
labels = [sample.label for sample in samples]
|
367 |
+
|
368 |
+
if not values: # revert to initial distribution
|
369 |
+
print('GPT failed to return integer arrows')
|
370 |
+
loc = self.action_spec['loc']
|
371 |
+
scale = self.action_spec['scale']
|
372 |
+
elif len(values) == 1: # single response, add a distribution over it
|
373 |
+
index = np.where([label == str(values[-1]) for label in labels])[0][0]
|
374 |
+
action = actions[index]
|
375 |
+
print('action', action)
|
376 |
+
loc = action
|
377 |
+
scale = self.action_spec['min_scale']
|
378 |
+
else: # fit distribution
|
379 |
+
selected_actions = []
|
380 |
+
for value in values:
|
381 |
+
idx = np.where([label == str(value) for label in labels])[0][0]
|
382 |
+
selected_actions.append(actions[idx])
|
383 |
+
print('selected_actions', selected_actions)
|
384 |
+
|
385 |
+
loc_scale = [
|
386 |
+
scipy.stats.norm.fit([action[d] for action in selected_actions])
|
387 |
+
for d in range(3)
|
388 |
+
]
|
389 |
+
loc = [loc_scale[d][0] for d in range(3)]
|
390 |
+
scale = np.clip(
|
391 |
+
[loc_scale[d][1] for d in range(3)],
|
392 |
+
self.action_spec['min_scale'],
|
393 |
+
None,
|
394 |
+
)
|
395 |
+
print('loc', loc, '\nscale', scale)
|
396 |
+
|
397 |
+
return loc, scale
|
vip_runner.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""VIP."""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
from tqdm import trange
|
8 |
+
import numpy as np
|
9 |
+
import vip
|
10 |
+
|
11 |
+
|
12 |
+
def make_prompt(description, top_n=3):
|
13 |
+
return f"""
|
14 |
+
INSTRUCTIONS:
|
15 |
+
You are tasked to locate an object, region, or point in space in the given annotated image according to a description.
|
16 |
+
The image is annoated with numbered circles.
|
17 |
+
Choose the top {top_n} circles that have the most overlap with and/or is closest to what the description is describing in the image.
|
18 |
+
You are a five-time world champion in this game.
|
19 |
+
Give a one sentence analysis of why you chose those points.
|
20 |
+
Provide your answer at the end in a valid JSON of this format:
|
21 |
+
|
22 |
+
{{"points": []}}
|
23 |
+
|
24 |
+
DESCRIPTION: {description}
|
25 |
+
IMAGE:
|
26 |
+
""".strip()
|
27 |
+
|
28 |
+
|
29 |
+
def extract_json(response, key):
|
30 |
+
json_part = re.search(r"\{.*\}", response, re.DOTALL)
|
31 |
+
parsed_json = {}
|
32 |
+
if json_part:
|
33 |
+
json_data = json_part.group()
|
34 |
+
# Parse the JSON data
|
35 |
+
parsed_json = json.loads(json_data)
|
36 |
+
else:
|
37 |
+
print("No JSON data found ******\n", response)
|
38 |
+
return parsed_json[key]
|
39 |
+
|
40 |
+
|
41 |
+
def vip_perform_selection(prompter, vlm, im, desc, arm_coord, samples, top_n):
|
42 |
+
"""Perform one selection pass given samples."""
|
43 |
+
image_circles_np = prompter.add_arrow_overlay_plt(
|
44 |
+
image=im, samples=samples, arm_xy=arm_coord, log_image=False
|
45 |
+
)
|
46 |
+
|
47 |
+
_, encoded_image_circles = cv2.imencode(".png", image_circles_np)
|
48 |
+
|
49 |
+
prompt_seq = [make_prompt(desc, top_n=top_n), encoded_image_circles]
|
50 |
+
response = vlm.query(prompt_seq)
|
51 |
+
|
52 |
+
try:
|
53 |
+
arrow_ids = extract_json(response, "points")
|
54 |
+
except Exception as e:
|
55 |
+
print(e)
|
56 |
+
arrow_ids = []
|
57 |
+
return arrow_ids, image_circles_np
|
58 |
+
|
59 |
+
|
60 |
+
def vip_runner(
|
61 |
+
vlm,
|
62 |
+
im,
|
63 |
+
desc,
|
64 |
+
style,
|
65 |
+
action_spec,
|
66 |
+
n_samples_init=25,
|
67 |
+
n_samples_opt=10,
|
68 |
+
n_iters=3,
|
69 |
+
n_parallel_trials=1,
|
70 |
+
):
|
71 |
+
"""VIP."""
|
72 |
+
|
73 |
+
prompter = vip.VisualIterativePrompter(
|
74 |
+
style, action_spec, vip.SupportedEmbodiments.HF_DEMO
|
75 |
+
)
|
76 |
+
|
77 |
+
output_ims = []
|
78 |
+
arm_coord = (int(im.shape[1] / 2), int(im.shape[0] / 2))
|
79 |
+
|
80 |
+
new_samples = []
|
81 |
+
center_mean = action_spec["loc"]
|
82 |
+
for i in range(n_parallel_trials):
|
83 |
+
center_mean = action_spec["loc"]
|
84 |
+
center_std = action_spec["scale"]
|
85 |
+
for itr in trange(n_iters):
|
86 |
+
if itr == 0:
|
87 |
+
style["num_samples"] = n_samples_init
|
88 |
+
else:
|
89 |
+
style["num_samples"] = n_samples_opt
|
90 |
+
samples = prompter.sample_actions(im, arm_coord, center_mean, center_std)
|
91 |
+
arrow_ids, image_circles_np = vip_perform_selection(
|
92 |
+
prompter, vlm, im, desc, arm_coord, samples, top_n=3
|
93 |
+
)
|
94 |
+
|
95 |
+
# plot sampled circles as red
|
96 |
+
selected_samples = []
|
97 |
+
for selected_id in arrow_ids:
|
98 |
+
sample = samples[selected_id]
|
99 |
+
sample.coord.color = (255, 0, 0)
|
100 |
+
selected_samples.append(sample)
|
101 |
+
image_circles_marked_np = prompter.add_arrow_overlay_plt(
|
102 |
+
image_circles_np, selected_samples, arm_coord
|
103 |
+
)
|
104 |
+
output_ims.append(image_circles_marked_np)
|
105 |
+
yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} iteration {itr+1}/{n_iters}. Still working..."
|
106 |
+
|
107 |
+
# if at last iteration, pick one answer out of the selected ones
|
108 |
+
if itr == n_iters - 1:
|
109 |
+
arrow_ids, _ = vip_perform_selection(
|
110 |
+
prompter, vlm, im, desc, arm_coord, selected_samples, top_n=1
|
111 |
+
)
|
112 |
+
|
113 |
+
selected_samples = []
|
114 |
+
for selected_id in arrow_ids:
|
115 |
+
sample = samples[selected_id]
|
116 |
+
sample.coord.color = (255, 0, 0)
|
117 |
+
selected_samples.append(sample)
|
118 |
+
image_circles_marked_np = prompter.add_arrow_overlay_plt(
|
119 |
+
im, selected_samples, arm_coord
|
120 |
+
)
|
121 |
+
output_ims.append(image_circles_marked_np)
|
122 |
+
new_samples += selected_samples
|
123 |
+
yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} last iteration. Still working..."
|
124 |
+
center_mean, center_std = prompter.fit(arrow_ids, samples)
|
125 |
+
|
126 |
+
if n_parallel_trials > 1:
|
127 |
+
# adjust sample label to avoid duplications
|
128 |
+
for sample_id in range(len(new_samples)):
|
129 |
+
new_samples[sample_id].label = str(sample_id)
|
130 |
+
arrow_ids, _ = vip_perform_selection(
|
131 |
+
prompter, vlm, im, desc, arm_coord, new_samples, top_n=1
|
132 |
+
)
|
133 |
+
|
134 |
+
selected_samples = []
|
135 |
+
for selected_id in arrow_ids:
|
136 |
+
sample = new_samples[selected_id]
|
137 |
+
sample.coord.color = (255, 0, 0)
|
138 |
+
selected_samples.append(sample)
|
139 |
+
image_circles_marked_np = prompter.add_arrow_overlay_plt(
|
140 |
+
im, selected_samples, arm_coord
|
141 |
+
)
|
142 |
+
output_ims.append(image_circles_marked_np)
|
143 |
+
center_mean, _ = prompter.fit(arrow_ids, new_samples)
|
144 |
+
|
145 |
+
if output_ims:
|
146 |
+
yield (
|
147 |
+
output_ims,
|
148 |
+
(
|
149 |
+
"Final selected coordinate:"
|
150 |
+
f" {np.round(prompter.action_to_coord(center_mean, im, arm_coord).xy, decimals=0)}"
|
151 |
+
),
|
152 |
+
)
|
153 |
+
return [], "Unable to understand query"
|
vip_utils.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for visual iterative prompting.
|
2 |
+
|
3 |
+
A number of utility functions for VIP.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import re
|
7 |
+
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
10 |
+
import scipy.spatial.distance as distance
|
11 |
+
|
12 |
+
|
13 |
+
def min_dist(coord, coords):
|
14 |
+
if not coords:
|
15 |
+
return np.inf
|
16 |
+
xys = np.asarray([[coord.xy] for coord in coords])
|
17 |
+
return np.linalg.norm(xys - np.asarray(coord.xy), axis=-1).min()
|
18 |
+
|
19 |
+
|
20 |
+
def coord_outside_image(coord, image, radius):
|
21 |
+
(height, image_width, _) = image.shape
|
22 |
+
x, y = coord.xy
|
23 |
+
x_outside = x > image_width - 2 * radius or x < 2 * radius
|
24 |
+
y_outside = y > height - 2 * radius or y < 2 * radius
|
25 |
+
return x_outside or y_outside
|
26 |
+
|
27 |
+
|
28 |
+
def is_invalid_coord(coord, coords, radius, image):
|
29 |
+
# invalid if too close to others or outside of the image
|
30 |
+
pos_overlaps = min_dist(coord, coords) < 1.5 * radius
|
31 |
+
return pos_overlaps or coord_outside_image(coord, image, radius)
|
32 |
+
|
33 |
+
|
34 |
+
def angle_mag_2_x_y(angle, mag, arm_coord, is_circle=False, radius=40):
|
35 |
+
x, y = arm_coord
|
36 |
+
x += int(np.cos(angle) * mag)
|
37 |
+
y += int(np.sin(angle) * mag)
|
38 |
+
if is_circle:
|
39 |
+
x += int(np.cos(angle) * radius * np.sign(mag))
|
40 |
+
y += int(np.sin(angle) * radius * np.sign(mag))
|
41 |
+
return x, y
|
42 |
+
|
43 |
+
|
44 |
+
def coord_to_text_coord(coord, arm_coord, radius):
|
45 |
+
delta_coord = np.asarray(coord.xy) - arm_coord
|
46 |
+
if np.linalg.norm(delta_coord) == 0:
|
47 |
+
return arm_coord
|
48 |
+
return (
|
49 |
+
int(coord.xy[0] + radius * delta_coord[0] / np.linalg.norm(delta_coord)),
|
50 |
+
int(coord.xy[1] + radius * delta_coord[1] / np.linalg.norm(delta_coord)),
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def parse_response(response, answer_key='Arrow: ['):
|
55 |
+
values = []
|
56 |
+
if answer_key in response:
|
57 |
+
print('parse_response from answer_key')
|
58 |
+
arrow_response = response.split(answer_key)[-1].split(']')[0]
|
59 |
+
for val in map(int, re.findall(r'\d+', arrow_response)):
|
60 |
+
values.append(val)
|
61 |
+
else:
|
62 |
+
print('parse_response for all ints')
|
63 |
+
for val in map(int, re.findall(r'\d+', response)):
|
64 |
+
values.append(val)
|
65 |
+
return values
|
66 |
+
|
67 |
+
|
68 |
+
def compute_errors(action, true_action, verbose=False):
|
69 |
+
"""Compute errors between a predicted action and true action."""
|
70 |
+
l2_error = np.linalg.norm(action - true_action)
|
71 |
+
cos_sim = 1 - distance.cosine(action, true_action)
|
72 |
+
l2_xy_error = np.linalg.norm(action[-2:] - true_action[-2:])
|
73 |
+
cos_xy_sim = 1 - distance.cosine(action[-2:], true_action[-2:])
|
74 |
+
z_error = np.abs(action[0] - true_action[0])
|
75 |
+
errors = {
|
76 |
+
'l2': l2_error,
|
77 |
+
'cos_sim': cos_sim,
|
78 |
+
'l2_xy_error': l2_xy_error,
|
79 |
+
'cos_xy_sim': cos_xy_sim,
|
80 |
+
'z_error': z_error,
|
81 |
+
}
|
82 |
+
|
83 |
+
if verbose:
|
84 |
+
print('action: \t', [f'{a:.3f}' for a in action])
|
85 |
+
print('true_action \t', [f'{a:.3f}' for a in true_action])
|
86 |
+
print(f'l2: \t\t{l2_error:.3f}')
|
87 |
+
print(f'l2_xy_error: \t{l2_xy_error:.3f}')
|
88 |
+
print(f'cos_sim: \t{cos_sim:.3f}')
|
89 |
+
print(f'cos_xy_sim: \t{cos_xy_sim:.3f}')
|
90 |
+
print(f'z_error: \t{z_error:.3f}')
|
91 |
+
|
92 |
+
return errors
|
93 |
+
|
94 |
+
|
95 |
+
def plot_errors(all_errors, error_types=None):
|
96 |
+
"""Plot errors across iterations."""
|
97 |
+
if error_types is None:
|
98 |
+
error_types = [
|
99 |
+
'l2',
|
100 |
+
'l2_xy_error',
|
101 |
+
'z_error',
|
102 |
+
'cos_sim',
|
103 |
+
'cos_xy_sim',
|
104 |
+
]
|
105 |
+
|
106 |
+
_, axs = plt.subplots(2, 3, figsize=(15, 8))
|
107 |
+
for i, error_type in enumerate(error_types): # go through each error type
|
108 |
+
all_iter_errors = {}
|
109 |
+
for error_by_iter in all_errors: # go through each call
|
110 |
+
for itr in error_by_iter: # go through each iteration
|
111 |
+
if itr in all_iter_errors: # add error to the iteration it happened
|
112 |
+
all_iter_errors[itr].append(error_by_iter[itr][error_type])
|
113 |
+
else:
|
114 |
+
all_iter_errors[itr] = [error_by_iter[itr][error_type]]
|
115 |
+
|
116 |
+
mean_iter_errors = [
|
117 |
+
np.mean(all_iter_errors[itr]) for itr in all_iter_errors
|
118 |
+
]
|
119 |
+
|
120 |
+
axs[i // 3, i % 3].plot(all_iter_errors.keys(), mean_iter_errors)
|
121 |
+
axs[i // 3, i % 3].set_title(error_type)
|
122 |
+
plt.show()
|
vlms.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""VLM Helper Functions."""
|
2 |
+
import base64
|
3 |
+
import numpy as np
|
4 |
+
from openai import OpenAI
|
5 |
+
|
6 |
+
|
7 |
+
class GPT4V:
|
8 |
+
"""GPT4V VLM."""
|
9 |
+
|
10 |
+
def __init__(self, openai_api_key):
|
11 |
+
self.client = OpenAI(api_key=openai_api_key)
|
12 |
+
|
13 |
+
def query(self, prompt_seq, temperature=0, max_tokens=512):
|
14 |
+
"""Queries GPT-4V."""
|
15 |
+
content = []
|
16 |
+
for elem in prompt_seq:
|
17 |
+
if isinstance(elem, str):
|
18 |
+
content.append({'type': 'text', 'text': elem})
|
19 |
+
elif isinstance(elem, np.ndarray):
|
20 |
+
base64_image_str = base64.b64encode(elem).decode('utf-8')
|
21 |
+
image_url = f'data:image/jpeg;base64,{base64_image_str}'
|
22 |
+
content.append({'type': 'image_url', 'image_url': {'url': image_url}})
|
23 |
+
|
24 |
+
messages = [{'role': 'user', 'content': content}]
|
25 |
+
|
26 |
+
response = self.client.chat.completions.create(
|
27 |
+
model='gpt-4-vision-preview',
|
28 |
+
messages=messages,
|
29 |
+
temperature=temperature,
|
30 |
+
max_tokens=max_tokens
|
31 |
+
)
|
32 |
+
|
33 |
+
return response.choices[0].message.content
|