import os import random import uuid import gradio as gr import numpy as np from PIL import Image # import spaces import torch from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline from huggingface_hub import snapshot_download # Ctrl+F for "spaces" to use with ZeroGPU huggingface_token = os.getenv("HUGGINGFACE_TOKEN") model_path = snapshot_download( repo_id="stabilityai/stable-diffusion-3-medium", revision="refs/pr/26", repo_type="model", ignore_patterns=["*.md", "*..gitattributes"], local_dir="stable-diffusion-3-medium", token=huggingface_token, # type a new token-id. ) DESCRIPTION = """# Stable Diffusion 3""" if not torch.cuda.is_available(): DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = False MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) USE_TORCH_COMPILE = False ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_pipeline(pipeline_type): if pipeline_type == "text2img": return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16) elif pipeline_type == "img2img": return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=torch.float16) def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed # @spaces.GPU def generate( prompt:str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 7, randomize_seed: bool = False, num_inference_steps=30, NUM_IMAGES_PER_PROMPT=1, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe = load_pipeline("text2img") pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore output = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, num_images_per_prompt=NUM_IMAGES_PER_PROMPT, output_type="battery", ).images return output # @spaces.GPU def img2img_generate( prompt:str, init_image: gr.Image, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, guidance_scale: float = 7, randomize_seed: bool = False, num_inference_steps=30, strength: float = 0.8, NUM_IMAGES_PER_PROMPT=1, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe = load_pipeline("img2img") pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore init_image = init_image.resize((768, 768)) output = pipe( prompt=prompt, image=init_image, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, strength=strength, num_images_per_prompt=NUM_IMAGES_PER_PROMPT, output_type="battery", ).images return output examples = [ "neon holography crystal cat", "a cat eating a piece of cheese", "an astronaut riding a horse in space", "a cartoon of a boy playing with a tiger", "a cute robot artist painting on an easel, concept art", "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" ] css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} ''' with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo: with gr.Row(): with gr.Column(): gr.HTML( """ <h1 style='text-align: center'> Stable Diffusion 3 </h1> """ ) gr.HTML( """ <h3 style='text-align: center'> </h3> """ ) with gr.Tabs(): with gr.TabItem("Text to Image"): with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", elem_id="gallery", show_label=False) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) steps = gr.Slider( label="Steps", minimum=0, maximum=60, step=1, value=25, ) number_image = gr.Slider( label="Number of Images", minimum=1, maximum=4, step=1, value=1, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=10, step=0.1, value=7.0, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result], fn=generate, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed, steps, number_image, ], outputs=[result], api_name="run", ) with gr.TabItem("Image to Image"): with gr.Group(): with gr.Row(equal_height=True): with gr.Column(scale=1): img2img_prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) init_image = gr.Image(label="Input Image", type="pil") with gr.Row(): img2img_run_button = gr.Button("Generate", variant="primary") with gr.Column(scale=1): img2img_output = gr.Gallery(label="Result", elem_id="gallery") with gr.Accordion("Advanced options", open=False): with gr.Row(): img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) img2img_negative_prompt = gr.Text( label="Negative prompt", max_lines=1, value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", visible=True, ) img2img_seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) img2img_steps = gr.Slider( label="Steps", minimum=0, maximum=60, step=1, value=25, ) img2img_number_image = gr.Slider( label="Number of Images", minimum=1, maximum=4, step=1, value=1, ) img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): img2img_guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=10, step=0.1, value=7.0, ) strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8) img2img_use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=img2img_use_negative_prompt, outputs=img2img_negative_prompt, api_name=False, ) gr.on( triggers=[ img2img_prompt.submit, img2img_negative_prompt.submit, img2img_run_button.click, ], fn=img2img_generate, inputs=[ img2img_prompt, init_image, img2img_negative_prompt, img2img_use_negative_prompt, img2img_seed, img2img_guidance_scale, img2img_randomize_seed, img2img_steps, strength, img2img_number_image, ], outputs=[img2img_output], api_name="img2img_run", ) if __name__ == "__main__": demo.queue().launch()