init
Browse files- app.py +249 -0
- core/__init__.py +0 -0
- core/__pycache__/__init__.cpython-39.pyc +0 -0
- core/__pycache__/attention.cpython-39.pyc +0 -0
- core/__pycache__/gs.cpython-39.pyc +0 -0
- core/__pycache__/models.cpython-39.pyc +0 -0
- core/__pycache__/options.cpython-39.pyc +0 -0
- core/__pycache__/provider_objaverse.cpython-39.pyc +0 -0
- core/__pycache__/unet.cpython-39.pyc +0 -0
- core/__pycache__/utils.cpython-39.pyc +0 -0
- core/attention.py +156 -0
- core/gs.py +190 -0
- core/models.py +174 -0
- core/options.py +120 -0
- core/provider_objaverse.py +172 -0
- core/unet.py +319 -0
- core/utils.py +109 -0
- data_test/anya_rgba.png +0 -0
- data_test/bird_rgba.png +0 -0
- data_test/catstatue_rgba.png +0 -0
- mvdream/__pycache__/mv_unet.cpython-39.pyc +0 -0
- mvdream/__pycache__/pipeline_mvdream.cpython-39.pyc +0 -0
- mvdream/mv_unet.py +1005 -0
- mvdream/pipeline_mvdream.py +559 -0
- requirements.txt +30 -0
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,249 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import tyro
         | 
| 3 | 
            +
            import imageio
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            import tqdm
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import torch.nn as nn
         | 
| 8 | 
            +
            import torch.nn.functional as F
         | 
| 9 | 
            +
            import torchvision.transforms.functional as TF
         | 
| 10 | 
            +
            from safetensors.torch import load_file
         | 
| 11 | 
            +
            import rembg
         | 
| 12 | 
            +
            import gradio as gr
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            import kiui
         | 
| 15 | 
            +
            from kiui.op import recenter
         | 
| 16 | 
            +
            from kiui.cam import orbit_camera
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from core.options import AllConfigs, Options
         | 
| 19 | 
            +
            from core.models import LGM
         | 
| 20 | 
            +
            from mvdream.pipeline_mvdream import MVDreamPipeline
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
         | 
| 23 | 
            +
            IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
         | 
| 24 | 
            +
            GRADIO_VIDEO_PATH = 'gradio_output.mp4'
         | 
| 25 | 
            +
            GRADIO_PLY_PATH = 'gradio_output.ply'
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            opt = tyro.cli(AllConfigs)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            # model
         | 
| 30 | 
            +
            model = LGM(opt)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # resume pretrained checkpoint
         | 
| 33 | 
            +
            if opt.resume is not None:
         | 
| 34 | 
            +
                if opt.resume.endswith('safetensors'):
         | 
| 35 | 
            +
                    ckpt = load_file(opt.resume, device='cpu')
         | 
| 36 | 
            +
                else:
         | 
| 37 | 
            +
                    ckpt = torch.load(opt.resume, map_location='cpu')
         | 
| 38 | 
            +
                model.load_state_dict(ckpt, strict=False)
         | 
| 39 | 
            +
                print(f'[INFO] Loaded checkpoint from {opt.resume}')
         | 
| 40 | 
            +
            else:
         | 
| 41 | 
            +
                print(f'[WARN] model randomly initialized, are you sure?')
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         | 
| 44 | 
            +
            model = model.half().to(device)
         | 
| 45 | 
            +
            model.eval()
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
         | 
| 48 | 
            +
            proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
         | 
| 49 | 
            +
            proj_matrix[0, 0] = 1 / tan_half_fov
         | 
| 50 | 
            +
            proj_matrix[1, 1] = 1 / tan_half_fov
         | 
| 51 | 
            +
            proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
         | 
| 52 | 
            +
            proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
         | 
| 53 | 
            +
            proj_matrix[2, 3] = 1
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            # load dreams
         | 
| 56 | 
            +
            pipe_text = MVDreamPipeline.from_pretrained(
         | 
| 57 | 
            +
                'ashawkey/mvdream-sd2.1-diffusers', # remote weights
         | 
| 58 | 
            +
                torch_dtype=torch.float16,
         | 
| 59 | 
            +
                trust_remote_code=True,
         | 
| 60 | 
            +
                # local_files_only=True,
         | 
| 61 | 
            +
            )
         | 
| 62 | 
            +
            pipe_text = pipe_text.to(device)
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            pipe_image = MVDreamPipeline.from_pretrained(
         | 
| 65 | 
            +
                "ashawkey/imagedream-ipmv-diffusers", # remote weights
         | 
| 66 | 
            +
                torch_dtype=torch.float16,
         | 
| 67 | 
            +
                trust_remote_code=True,
         | 
| 68 | 
            +
                # local_files_only=True,
         | 
| 69 | 
            +
            )
         | 
| 70 | 
            +
            pipe_image = pipe_image.to(device)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            # load rembg
         | 
| 73 | 
            +
            bg_remover = rembg.new_session()
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            # process function
         | 
| 76 | 
            +
            def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42):
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                # seed
         | 
| 79 | 
            +
                kiui.seed_everything(input_seed)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                os.makedirs(opt.workspace, exist_ok=True)
         | 
| 82 | 
            +
                output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH)
         | 
| 83 | 
            +
                output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                # text-conditioned
         | 
| 86 | 
            +
                if input_image is None:
         | 
| 87 | 
            +
                    mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation)
         | 
| 88 | 
            +
                    mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
         | 
| 89 | 
            +
                    # bg removal
         | 
| 90 | 
            +
                    mv_image = []
         | 
| 91 | 
            +
                    for i in range(4):
         | 
| 92 | 
            +
                        image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
         | 
| 93 | 
            +
                        # to white bg
         | 
| 94 | 
            +
                        image = image.astype(np.float32) / 255
         | 
| 95 | 
            +
                        image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
         | 
| 96 | 
            +
                        image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
         | 
| 97 | 
            +
                        mv_image.append(image)
         | 
| 98 | 
            +
                # image-conditioned (may also input text, but no text usually works too)
         | 
| 99 | 
            +
                else:
         | 
| 100 | 
            +
                    input_image = np.array(input_image) # uint8
         | 
| 101 | 
            +
                    # bg removal
         | 
| 102 | 
            +
                    carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
         | 
| 103 | 
            +
                    mask = carved_image[..., -1] > 0
         | 
| 104 | 
            +
                    image = recenter(carved_image, mask, border_ratio=0.2)
         | 
| 105 | 
            +
                    image = image.astype(np.float32) / 255.0
         | 
| 106 | 
            +
                    image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
         | 
| 107 | 
            +
                    mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0,  elevation=input_elevation)
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                mv_image_grid = np.concatenate([
         | 
| 110 | 
            +
                    np.concatenate([mv_image[1], mv_image[2]], axis=1),
         | 
| 111 | 
            +
                    np.concatenate([mv_image[3], mv_image[0]], axis=1),
         | 
| 112 | 
            +
                ], axis=0)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                # generate gaussians
         | 
| 115 | 
            +
                input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
         | 
| 116 | 
            +
                input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
         | 
| 117 | 
            +
                input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
         | 
| 118 | 
            +
                input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation)
         | 
| 121 | 
            +
                input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                with torch.no_grad():
         | 
| 124 | 
            +
                    with torch.autocast(device_type='cuda', dtype=torch.float16):
         | 
| 125 | 
            +
                        # generate gaussians
         | 
| 126 | 
            +
                        gaussians = model.forward_gaussians(input_image)
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                    # save gaussians
         | 
| 129 | 
            +
                    model.gs.save_ply(gaussians, output_ply_path)
         | 
| 130 | 
            +
                    
         | 
| 131 | 
            +
                    # render 360 video 
         | 
| 132 | 
            +
                    images = []
         | 
| 133 | 
            +
                    elevation = 0
         | 
| 134 | 
            +
                    if opt.fancy_video:
         | 
| 135 | 
            +
                        azimuth = np.arange(0, 720, 4, dtype=np.int32)
         | 
| 136 | 
            +
                        for azi in tqdm.tqdm(azimuth):
         | 
| 137 | 
            +
                            
         | 
| 138 | 
            +
                            cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                            cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
         | 
| 141 | 
            +
                            
         | 
| 142 | 
            +
                            # cameras needed by gaussian rasterizer
         | 
| 143 | 
            +
                            cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
         | 
| 144 | 
            +
                            cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
         | 
| 145 | 
            +
                            cam_pos = - cam_poses[:, :3, 3] # [V, 3]
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                            scale = min(azi / 360, 1)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                            image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
         | 
| 150 | 
            +
                            images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
         | 
| 151 | 
            +
                    else:
         | 
| 152 | 
            +
                        azimuth = np.arange(0, 360, 2, dtype=np.int32)
         | 
| 153 | 
            +
                        for azi in tqdm.tqdm(azimuth):
         | 
| 154 | 
            +
                            
         | 
| 155 | 
            +
                            cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                            cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
         | 
| 158 | 
            +
                            
         | 
| 159 | 
            +
                            # cameras needed by gaussian rasterizer
         | 
| 160 | 
            +
                            cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
         | 
| 161 | 
            +
                            cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
         | 
| 162 | 
            +
                            cam_pos = - cam_poses[:, :3, 3] # [V, 3]
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                            image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
         | 
| 165 | 
            +
                            images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    images = np.concatenate(images, axis=0)
         | 
| 168 | 
            +
                    imageio.mimwrite(output_video_path, images, fps=30)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                return mv_image_grid, output_video_path, output_ply_path
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            # gradio UI
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            _TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation'''
         | 
| 175 | 
            +
             | 
| 176 | 
            +
            _DESCRIPTION = '''
         | 
| 177 | 
            +
            <div>
         | 
| 178 | 
            +
            <a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
         | 
| 179 | 
            +
            <a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a>
         | 
| 180 | 
            +
            </div>
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            * Input can be only text, only image, or both image and text. 
         | 
| 183 | 
            +
            * If you find the output unsatisfying, try using different seeds!
         | 
| 184 | 
            +
            '''
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            block = gr.Blocks(title=_TITLE).queue()
         | 
| 187 | 
            +
            with block:
         | 
| 188 | 
            +
                with gr.Row():
         | 
| 189 | 
            +
                    with gr.Column(scale=1):
         | 
| 190 | 
            +
                        gr.Markdown('# ' + _TITLE)
         | 
| 191 | 
            +
                gr.Markdown(_DESCRIPTION)
         | 
| 192 | 
            +
                
         | 
| 193 | 
            +
                with gr.Row(variant='panel'):
         | 
| 194 | 
            +
                    with gr.Column(scale=1):
         | 
| 195 | 
            +
                        # input image
         | 
| 196 | 
            +
                        input_image = gr.Image(label="image", type='pil')
         | 
| 197 | 
            +
                        # input prompt
         | 
| 198 | 
            +
                        input_text = gr.Textbox(label="prompt")
         | 
| 199 | 
            +
                        # negative prompt
         | 
| 200 | 
            +
                        input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
         | 
| 201 | 
            +
                        # elevation
         | 
| 202 | 
            +
                        input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
         | 
| 203 | 
            +
                        # inference steps
         | 
| 204 | 
            +
                        input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
         | 
| 205 | 
            +
                        # random seed
         | 
| 206 | 
            +
                        input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
         | 
| 207 | 
            +
                        # gen button
         | 
| 208 | 
            +
                        button_gen = gr.Button("Generate")
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    
         | 
| 211 | 
            +
                    with gr.Column(scale=1):
         | 
| 212 | 
            +
                        with gr.Tab("Video"):
         | 
| 213 | 
            +
                            # final video results
         | 
| 214 | 
            +
                            output_video = gr.Video(label="video")
         | 
| 215 | 
            +
                            # ply file
         | 
| 216 | 
            +
                            output_file = gr.File(label="ply")
         | 
| 217 | 
            +
                        with gr.Tab("Multi-view Image"):
         | 
| 218 | 
            +
                            # multi-view results
         | 
| 219 | 
            +
                            output_image = gr.Image(interactive=False, show_label=False)
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    button_gen.click(process, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file])
         | 
| 222 | 
            +
                
         | 
| 223 | 
            +
                gr.Examples(
         | 
| 224 | 
            +
                    examples=[
         | 
| 225 | 
            +
                        "data_test/anya_rgba.png",
         | 
| 226 | 
            +
                        "data_test/bird_rgba.png",
         | 
| 227 | 
            +
                        "data_test/catstatue_rgba.png",
         | 
| 228 | 
            +
                    ],
         | 
| 229 | 
            +
                    inputs=[input_image],
         | 
| 230 | 
            +
                    outputs=[output_image, output_video, output_file],
         | 
| 231 | 
            +
                    fn=lambda x: process(input_image=x, prompt=''),
         | 
| 232 | 
            +
                    cache_examples=False,
         | 
| 233 | 
            +
                    label='Image-to-3D Examples'
         | 
| 234 | 
            +
                )
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                gr.Examples(
         | 
| 237 | 
            +
                    examples=[
         | 
| 238 | 
            +
                        "a motorbike",
         | 
| 239 | 
            +
                        "a hamburger",
         | 
| 240 | 
            +
                        "a furry red fox head",
         | 
| 241 | 
            +
                    ],
         | 
| 242 | 
            +
                    inputs=[input_text],
         | 
| 243 | 
            +
                    outputs=[output_image, output_video, output_file],
         | 
| 244 | 
            +
                    fn=lambda x: process(input_image=None, prompt=x),
         | 
| 245 | 
            +
                    cache_examples=False,
         | 
| 246 | 
            +
                    label='Text-to-3D Examples'
         | 
| 247 | 
            +
                )
         | 
| 248 | 
            +
                
         | 
| 249 | 
            +
            block.launch()
         | 
    	
        core/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        core/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | Binary file (123 Bytes). View file | 
|  | 
    	
        core/__pycache__/attention.cpython-39.pyc
    ADDED
    
    | Binary file (4.36 kB). View file | 
|  | 
    	
        core/__pycache__/gs.cpython-39.pyc
    ADDED
    
    | Binary file (5.48 kB). View file | 
|  | 
    	
        core/__pycache__/models.cpython-39.pyc
    ADDED
    
    | Binary file (4.47 kB). View file | 
|  | 
    	
        core/__pycache__/options.cpython-39.pyc
    ADDED
    
    | Binary file (2.46 kB). View file | 
|  | 
    	
        core/__pycache__/provider_objaverse.cpython-39.pyc
    ADDED
    
    | Binary file (7.74 kB). View file | 
|  | 
    	
        core/__pycache__/unet.cpython-39.pyc
    ADDED
    
    | Binary file (7.45 kB). View file | 
|  | 
    	
        core/__pycache__/utils.cpython-39.pyc
    ADDED
    
    | Binary file (2.54 kB). View file | 
|  | 
    	
        core/attention.py
    ADDED
    
    | @@ -0,0 +1,156 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # This source code is licensed under the Apache License, Version 2.0
         | 
| 4 | 
            +
            # found in the LICENSE file in the root directory of this source tree.
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # References:
         | 
| 7 | 
            +
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 8 | 
            +
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import os
         | 
| 11 | 
            +
            import warnings
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from torch import Tensor
         | 
| 14 | 
            +
            from torch import nn
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
         | 
| 17 | 
            +
            try:
         | 
| 18 | 
            +
                if XFORMERS_ENABLED:
         | 
| 19 | 
            +
                    from xformers.ops import memory_efficient_attention, unbind
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                    XFORMERS_AVAILABLE = True
         | 
| 22 | 
            +
                    warnings.warn("xFormers is available (Attention)")
         | 
| 23 | 
            +
                else:
         | 
| 24 | 
            +
                    warnings.warn("xFormers is disabled (Attention)")
         | 
| 25 | 
            +
                    raise ImportError
         | 
| 26 | 
            +
            except ImportError:
         | 
| 27 | 
            +
                XFORMERS_AVAILABLE = False
         | 
| 28 | 
            +
                warnings.warn("xFormers is not available (Attention)")
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            class Attention(nn.Module):
         | 
| 32 | 
            +
                def __init__(
         | 
| 33 | 
            +
                    self,
         | 
| 34 | 
            +
                    dim: int,
         | 
| 35 | 
            +
                    num_heads: int = 8,
         | 
| 36 | 
            +
                    qkv_bias: bool = False,
         | 
| 37 | 
            +
                    proj_bias: bool = True,
         | 
| 38 | 
            +
                    attn_drop: float = 0.0,
         | 
| 39 | 
            +
                    proj_drop: float = 0.0,
         | 
| 40 | 
            +
                ) -> None:
         | 
| 41 | 
            +
                    super().__init__()
         | 
| 42 | 
            +
                    self.num_heads = num_heads
         | 
| 43 | 
            +
                    head_dim = dim // num_heads
         | 
| 44 | 
            +
                    self.scale = head_dim**-0.5
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         | 
| 47 | 
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         | 
| 48 | 
            +
                    self.proj = nn.Linear(dim, dim, bias=proj_bias)
         | 
| 49 | 
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 52 | 
            +
                    B, N, C = x.shape
         | 
| 53 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
         | 
| 56 | 
            +
                    attn = q @ k.transpose(-2, -1)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    attn = attn.softmax(dim=-1)
         | 
| 59 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 62 | 
            +
                    x = self.proj(x)
         | 
| 63 | 
            +
                    x = self.proj_drop(x)
         | 
| 64 | 
            +
                    return x
         | 
| 65 | 
            +
             | 
| 66 | 
            +
             | 
| 67 | 
            +
            class MemEffAttention(Attention):
         | 
| 68 | 
            +
                def forward(self, x: Tensor, attn_bias=None) -> Tensor:
         | 
| 69 | 
            +
                    if not XFORMERS_AVAILABLE:
         | 
| 70 | 
            +
                        if attn_bias is not None:
         | 
| 71 | 
            +
                            raise AssertionError("xFormers is required for using nested tensors")
         | 
| 72 | 
            +
                        return super().forward(x)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    B, N, C = x.shape
         | 
| 75 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    q, k, v = unbind(qkv, 2)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
         | 
| 80 | 
            +
                    x = x.reshape([B, N, C])
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    x = self.proj(x)
         | 
| 83 | 
            +
                    x = self.proj_drop(x)
         | 
| 84 | 
            +
                    return x
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            class CrossAttention(nn.Module):
         | 
| 88 | 
            +
                def __init__(
         | 
| 89 | 
            +
                    self,
         | 
| 90 | 
            +
                    dim: int,
         | 
| 91 | 
            +
                    dim_q: int,
         | 
| 92 | 
            +
                    dim_k: int,
         | 
| 93 | 
            +
                    dim_v: int,
         | 
| 94 | 
            +
                    num_heads: int = 8,
         | 
| 95 | 
            +
                    qkv_bias: bool = False,
         | 
| 96 | 
            +
                    proj_bias: bool = True,
         | 
| 97 | 
            +
                    attn_drop: float = 0.0,
         | 
| 98 | 
            +
                    proj_drop: float = 0.0,
         | 
| 99 | 
            +
                ) -> None:
         | 
| 100 | 
            +
                    super().__init__()
         | 
| 101 | 
            +
                    self.dim = dim
         | 
| 102 | 
            +
                    self.num_heads = num_heads
         | 
| 103 | 
            +
                    head_dim = dim // num_heads
         | 
| 104 | 
            +
                    self.scale = head_dim**-0.5
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias)
         | 
| 107 | 
            +
                    self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias)
         | 
| 108 | 
            +
                    self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias)
         | 
| 109 | 
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         | 
| 110 | 
            +
                    self.proj = nn.Linear(dim, dim, bias=proj_bias)
         | 
| 111 | 
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
         | 
| 114 | 
            +
                    # q: [B, N, Cq]
         | 
| 115 | 
            +
                    # k: [B, M, Ck]
         | 
| 116 | 
            +
                    # v: [B, M, Cv]
         | 
| 117 | 
            +
                    # return: [B, N, C]
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    B, N, _ = q.shape
         | 
| 120 | 
            +
                    M = k.shape[1]
         | 
| 121 | 
            +
                    
         | 
| 122 | 
            +
                    q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, N, C/nh]
         | 
| 123 | 
            +
                    k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh]
         | 
| 124 | 
            +
                    v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh]
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    attn = q @ k.transpose(-2, -1) # [B, nh, N, M]
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    attn = attn.softmax(dim=-1) # [B, nh, N, M]
         | 
| 129 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, -1) # [B, nh, N, M] @ [B, nh, M, C/nh] --> [B, nh, N, C/nh] --> [B, N, nh, C/nh] --> [B, N, C]
         | 
| 132 | 
            +
                    x = self.proj(x)
         | 
| 133 | 
            +
                    x = self.proj_drop(x)
         | 
| 134 | 
            +
                    return x
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            class MemEffCrossAttention(CrossAttention):
         | 
| 138 | 
            +
                def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor:
         | 
| 139 | 
            +
                    if not XFORMERS_AVAILABLE:
         | 
| 140 | 
            +
                        if attn_bias is not None:
         | 
| 141 | 
            +
                            raise AssertionError("xFormers is required for using nested tensors")
         | 
| 142 | 
            +
                        return super().forward(x)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    B, N, _ = q.shape
         | 
| 145 | 
            +
                    M = k.shape[1]
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads) # [B, N, nh, C/nh]
         | 
| 148 | 
            +
                    k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh]
         | 
| 149 | 
            +
                    v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh]
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
         | 
| 152 | 
            +
                    x = x.reshape(B, N, -1)
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    x = self.proj(x)
         | 
| 155 | 
            +
                    x = self.proj_drop(x)
         | 
| 156 | 
            +
                    return x
         | 
    	
        core/gs.py
    ADDED
    
    | @@ -0,0 +1,190 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import numpy as np
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn as nn
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from diff_gaussian_rasterization import (
         | 
| 8 | 
            +
                GaussianRasterizationSettings,
         | 
| 9 | 
            +
                GaussianRasterizer,
         | 
| 10 | 
            +
            )
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from core.options import Options
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            import kiui
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            class GaussianRenderer:
         | 
| 17 | 
            +
                def __init__(self, opt: Options):
         | 
| 18 | 
            +
                    
         | 
| 19 | 
            +
                    self.opt = opt
         | 
| 20 | 
            +
                    self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
         | 
| 21 | 
            +
                    
         | 
| 22 | 
            +
                    # intrinsics
         | 
| 23 | 
            +
                    self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
         | 
| 24 | 
            +
                    self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
         | 
| 25 | 
            +
                    self.proj_matrix[0, 0] = 1 / self.tan_half_fov
         | 
| 26 | 
            +
                    self.proj_matrix[1, 1] = 1 / self.tan_half_fov
         | 
| 27 | 
            +
                    self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
         | 
| 28 | 
            +
                    self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
         | 
| 29 | 
            +
                    self.proj_matrix[2, 3] = 1
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                def render(self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1):
         | 
| 32 | 
            +
                    # gaussians: [B, N, 14]
         | 
| 33 | 
            +
                    # cam_view, cam_view_proj: [B, V, 4, 4]
         | 
| 34 | 
            +
                    # cam_pos: [B, V, 3]
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                    device = gaussians.device
         | 
| 37 | 
            +
                    B, V = cam_view.shape[:2]
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    # loop of loop...
         | 
| 40 | 
            +
                    images = []
         | 
| 41 | 
            +
                    alphas = []
         | 
| 42 | 
            +
                    for b in range(B):
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                        # pos, opacity, scale, rotation, shs
         | 
| 45 | 
            +
                        means3D = gaussians[b, :, 0:3].contiguous().float()
         | 
| 46 | 
            +
                        opacity = gaussians[b, :, 3:4].contiguous().float()
         | 
| 47 | 
            +
                        scales = gaussians[b, :, 4:7].contiguous().float()
         | 
| 48 | 
            +
                        rotations = gaussians[b, :, 7:11].contiguous().float()
         | 
| 49 | 
            +
                        rgbs = gaussians[b, :, 11:].contiguous().float() # [N, 3]
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                        for v in range(V):
         | 
| 52 | 
            +
                            
         | 
| 53 | 
            +
                            # render novel views
         | 
| 54 | 
            +
                            view_matrix = cam_view[b, v].float()
         | 
| 55 | 
            +
                            view_proj_matrix = cam_view_proj[b, v].float()
         | 
| 56 | 
            +
                            campos = cam_pos[b, v].float()
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                            raster_settings = GaussianRasterizationSettings(
         | 
| 59 | 
            +
                                image_height=self.opt.output_size,
         | 
| 60 | 
            +
                                image_width=self.opt.output_size,
         | 
| 61 | 
            +
                                tanfovx=self.tan_half_fov,
         | 
| 62 | 
            +
                                tanfovy=self.tan_half_fov,
         | 
| 63 | 
            +
                                bg=self.bg_color if bg_color is None else bg_color,
         | 
| 64 | 
            +
                                scale_modifier=scale_modifier,
         | 
| 65 | 
            +
                                viewmatrix=view_matrix,
         | 
| 66 | 
            +
                                projmatrix=view_proj_matrix,
         | 
| 67 | 
            +
                                sh_degree=0,
         | 
| 68 | 
            +
                                campos=campos,
         | 
| 69 | 
            +
                                prefiltered=False,
         | 
| 70 | 
            +
                                debug=False,
         | 
| 71 | 
            +
                            )
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                            rasterizer = GaussianRasterizer(raster_settings=raster_settings)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                            # Rasterize visible Gaussians to image, obtain their radii (on screen).
         | 
| 76 | 
            +
                            rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
         | 
| 77 | 
            +
                                means3D=means3D,
         | 
| 78 | 
            +
                                means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device),
         | 
| 79 | 
            +
                                shs=None,
         | 
| 80 | 
            +
                                colors_precomp=rgbs,
         | 
| 81 | 
            +
                                opacities=opacity,
         | 
| 82 | 
            +
                                scales=scales,
         | 
| 83 | 
            +
                                rotations=rotations,
         | 
| 84 | 
            +
                                cov3D_precomp=None,
         | 
| 85 | 
            +
                            )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                            rendered_image = rendered_image.clamp(0, 1)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                            images.append(rendered_image)
         | 
| 90 | 
            +
                            alphas.append(rendered_alpha)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    images = torch.stack(images, dim=0).view(B, V, 3, self.opt.output_size, self.opt.output_size)
         | 
| 93 | 
            +
                    alphas = torch.stack(alphas, dim=0).view(B, V, 1, self.opt.output_size, self.opt.output_size)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    return {
         | 
| 96 | 
            +
                        "image": images, # [B, V, 3, H, W]
         | 
| 97 | 
            +
                        "alpha": alphas, # [B, V, 1, H, W]
         | 
| 98 | 
            +
                    }
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
                def save_ply(self, gaussians, path, compatible=True):
         | 
| 102 | 
            +
                    # gaussians: [B, N, 14]
         | 
| 103 | 
            +
                    # compatible: save pre-activated gaussians as in the original paper
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    assert gaussians.shape[0] == 1, 'only support batch size 1'
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    from plyfile import PlyData, PlyElement
         | 
| 108 | 
            +
                 
         | 
| 109 | 
            +
                    means3D = gaussians[0, :, 0:3].contiguous().float()
         | 
| 110 | 
            +
                    opacity = gaussians[0, :, 3:4].contiguous().float()
         | 
| 111 | 
            +
                    scales = gaussians[0, :, 4:7].contiguous().float()
         | 
| 112 | 
            +
                    rotations = gaussians[0, :, 7:11].contiguous().float()
         | 
| 113 | 
            +
                    shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    # prune by opacity
         | 
| 116 | 
            +
                    mask = opacity.squeeze(-1) >= 0.005
         | 
| 117 | 
            +
                    means3D = means3D[mask]
         | 
| 118 | 
            +
                    opacity = opacity[mask]
         | 
| 119 | 
            +
                    scales = scales[mask]
         | 
| 120 | 
            +
                    rotations = rotations[mask]
         | 
| 121 | 
            +
                    shs = shs[mask]
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    # invert activation to make it compatible with the original ply format
         | 
| 124 | 
            +
                    if compatible:
         | 
| 125 | 
            +
                        opacity = kiui.op.inverse_sigmoid(opacity)
         | 
| 126 | 
            +
                        scales = torch.log(scales + 1e-8)
         | 
| 127 | 
            +
                        shs = (shs - 0.5) / 0.28209479177387814
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    xyzs = means3D.detach().cpu().numpy()
         | 
| 130 | 
            +
                    f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
         | 
| 131 | 
            +
                    opacities = opacity.detach().cpu().numpy()
         | 
| 132 | 
            +
                    scales = scales.detach().cpu().numpy()
         | 
| 133 | 
            +
                    rotations = rotations.detach().cpu().numpy()
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    l = ['x', 'y', 'z']
         | 
| 136 | 
            +
                    # All channels except the 3 DC
         | 
| 137 | 
            +
                    for i in range(f_dc.shape[1]):
         | 
| 138 | 
            +
                        l.append('f_dc_{}'.format(i))
         | 
| 139 | 
            +
                    l.append('opacity')
         | 
| 140 | 
            +
                    for i in range(scales.shape[1]):
         | 
| 141 | 
            +
                        l.append('scale_{}'.format(i))
         | 
| 142 | 
            +
                    for i in range(rotations.shape[1]):
         | 
| 143 | 
            +
                        l.append('rot_{}'.format(i))
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    dtype_full = [(attribute, 'f4') for attribute in l]
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    elements = np.empty(xyzs.shape[0], dtype=dtype_full)
         | 
| 148 | 
            +
                    attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
         | 
| 149 | 
            +
                    elements[:] = list(map(tuple, attributes))
         | 
| 150 | 
            +
                    el = PlyElement.describe(elements, 'vertex')
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    PlyData([el]).write(path)
         | 
| 153 | 
            +
                
         | 
| 154 | 
            +
                def load_ply(self, path, compatible=True):
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    from plyfile import PlyData, PlyElement
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    plydata = PlyData.read(path)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
         | 
| 161 | 
            +
                                    np.asarray(plydata.elements[0]["y"]),
         | 
| 162 | 
            +
                                    np.asarray(plydata.elements[0]["z"])),  axis=1)
         | 
| 163 | 
            +
                    print("Number of points at loading : ", xyz.shape[0])
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    shs = np.zeros((xyz.shape[0], 3))
         | 
| 168 | 
            +
                    shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
         | 
| 169 | 
            +
                    shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"])
         | 
| 170 | 
            +
                    shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"])
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
         | 
| 173 | 
            +
                    scales = np.zeros((xyz.shape[0], len(scale_names)))
         | 
| 174 | 
            +
                    for idx, attr_name in enumerate(scale_names):
         | 
| 175 | 
            +
                        scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
         | 
| 178 | 
            +
                    rots = np.zeros((xyz.shape[0], len(rot_names)))
         | 
| 179 | 
            +
                    for idx, attr_name in enumerate(rot_names):
         | 
| 180 | 
            +
                        rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
         | 
| 181 | 
            +
                      
         | 
| 182 | 
            +
                    gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1)
         | 
| 183 | 
            +
                    gaussians = torch.from_numpy(gaussians).float() # cpu
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    if compatible:
         | 
| 186 | 
            +
                        gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4])
         | 
| 187 | 
            +
                        gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7])
         | 
| 188 | 
            +
                        gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    return gaussians
         | 
    	
        core/models.py
    ADDED
    
    | @@ -0,0 +1,174 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import kiui
         | 
| 7 | 
            +
            from kiui.lpips import LPIPS
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from core.unet import UNet
         | 
| 10 | 
            +
            from core.options import Options
         | 
| 11 | 
            +
            from core.gs import GaussianRenderer
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            class LGM(nn.Module):
         | 
| 15 | 
            +
                def __init__(
         | 
| 16 | 
            +
                    self,
         | 
| 17 | 
            +
                    opt: Options,
         | 
| 18 | 
            +
                ):
         | 
| 19 | 
            +
                    super().__init__()
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                    self.opt = opt
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                    # unet
         | 
| 24 | 
            +
                    self.unet = UNet(
         | 
| 25 | 
            +
                        9, 14, 
         | 
| 26 | 
            +
                        down_channels=self.opt.down_channels,
         | 
| 27 | 
            +
                        down_attention=self.opt.down_attention,
         | 
| 28 | 
            +
                        mid_attention=self.opt.mid_attention,
         | 
| 29 | 
            +
                        up_channels=self.opt.up_channels,
         | 
| 30 | 
            +
                        up_attention=self.opt.up_attention,
         | 
| 31 | 
            +
                    )
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                    # last conv
         | 
| 34 | 
            +
                    self.conv = nn.Conv2d(14, 14, kernel_size=1) # NOTE: maybe remove it if train again
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                    # Gaussian Renderer
         | 
| 37 | 
            +
                    self.gs = GaussianRenderer(opt)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    # activations...
         | 
| 40 | 
            +
                    self.pos_act = lambda x: x.clamp(-1, 1)
         | 
| 41 | 
            +
                    self.scale_act = lambda x: 0.1 * F.softplus(x)
         | 
| 42 | 
            +
                    self.opacity_act = lambda x: torch.sigmoid(x)
         | 
| 43 | 
            +
                    self.rot_act = F.normalize
         | 
| 44 | 
            +
                    self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 # NOTE: may use sigmoid if train again
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    # LPIPS loss
         | 
| 47 | 
            +
                    if self.opt.lambda_lpips > 0:
         | 
| 48 | 
            +
                        self.lpips_loss = LPIPS(net='vgg')
         | 
| 49 | 
            +
                        self.lpips_loss.requires_grad_(False)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
                def state_dict(self, **kwargs):
         | 
| 53 | 
            +
                    # remove lpips_loss
         | 
| 54 | 
            +
                    state_dict = super().state_dict(**kwargs)
         | 
| 55 | 
            +
                    for k in list(state_dict.keys()):
         | 
| 56 | 
            +
                        if 'lpips_loss' in k:
         | 
| 57 | 
            +
                            del state_dict[k]
         | 
| 58 | 
            +
                    return state_dict
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
                def prepare_default_rays(self, device, elevation=0):
         | 
| 62 | 
            +
                    
         | 
| 63 | 
            +
                    from kiui.cam import orbit_camera
         | 
| 64 | 
            +
                    from core.utils import get_rays
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    cam_poses = np.stack([
         | 
| 67 | 
            +
                        orbit_camera(elevation, 0, radius=self.opt.cam_radius),
         | 
| 68 | 
            +
                        orbit_camera(elevation, 90, radius=self.opt.cam_radius),
         | 
| 69 | 
            +
                        orbit_camera(elevation, 180, radius=self.opt.cam_radius),
         | 
| 70 | 
            +
                        orbit_camera(elevation, 270, radius=self.opt.cam_radius),
         | 
| 71 | 
            +
                    ], axis=0) # [4, 4, 4]
         | 
| 72 | 
            +
                    cam_poses = torch.from_numpy(cam_poses)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    rays_embeddings = []
         | 
| 75 | 
            +
                    for i in range(cam_poses.shape[0]):
         | 
| 76 | 
            +
                        rays_o, rays_d = get_rays(cam_poses[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
         | 
| 77 | 
            +
                        rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
         | 
| 78 | 
            +
                        rays_embeddings.append(rays_plucker)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                        ## visualize rays for plotting figure
         | 
| 81 | 
            +
                        # kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True)
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w]
         | 
| 84 | 
            +
                    
         | 
| 85 | 
            +
                    return rays_embeddings
         | 
| 86 | 
            +
                    
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def forward_gaussians(self, images):
         | 
| 89 | 
            +
                    # images: [B, 4, 9, H, W]
         | 
| 90 | 
            +
                    # return: Gaussians: [B, dim_t]
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    B, V, C, H, W = images.shape
         | 
| 93 | 
            +
                    images = images.view(B*V, C, H, W)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    x = self.unet(images) # [B*4, 14, h, w]
         | 
| 96 | 
            +
                    x = self.conv(x) # [B*4, 14, h, w]
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    x = x.reshape(B, 4, 14, self.opt.splat_size, self.opt.splat_size)
         | 
| 99 | 
            +
                    
         | 
| 100 | 
            +
                    ## visualize multi-view gaussian features for plotting figure
         | 
| 101 | 
            +
                    # tmp_alpha = self.opacity_act(x[0, :, 3:4])
         | 
| 102 | 
            +
                    # tmp_img_rgb = self.rgb_act(x[0, :, 11:]) * tmp_alpha + (1 - tmp_alpha)
         | 
| 103 | 
            +
                    # tmp_img_pos = self.pos_act(x[0, :, 0:3]) * 0.5 + 0.5
         | 
| 104 | 
            +
                    # kiui.vis.plot_image(tmp_img_rgb, save=True)
         | 
| 105 | 
            +
                    # kiui.vis.plot_image(tmp_img_pos, save=True)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                    pos = self.pos_act(x[..., 0:3]) # [B, N, 3]
         | 
| 110 | 
            +
                    opacity = self.opacity_act(x[..., 3:4])
         | 
| 111 | 
            +
                    scale = self.scale_act(x[..., 4:7])
         | 
| 112 | 
            +
                    rotation = self.rot_act(x[..., 7:11])
         | 
| 113 | 
            +
                    rgbs = self.rgb_act(x[..., 11:])
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
         | 
| 116 | 
            +
                    
         | 
| 117 | 
            +
                    return gaussians
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                
         | 
| 120 | 
            +
                def forward(self, data, step_ratio=1):
         | 
| 121 | 
            +
                    # data: output of the dataloader
         | 
| 122 | 
            +
                    # return: loss
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    results = {}
         | 
| 125 | 
            +
                    loss = 0
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    images = data['input'] # [B, 4, 9, h, W], input features
         | 
| 128 | 
            +
                    
         | 
| 129 | 
            +
                    # use the first view to predict gaussians
         | 
| 130 | 
            +
                    gaussians = self.forward_gaussians(images) # [B, N, 14]
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    results['gaussians'] = gaussians
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    # random bg for training
         | 
| 135 | 
            +
                    if self.training:
         | 
| 136 | 
            +
                        bg_color = torch.rand(3, dtype=torch.float32, device=gaussians.device)
         | 
| 137 | 
            +
                    else:
         | 
| 138 | 
            +
                        bg_color = torch.ones(3, dtype=torch.float32, device=gaussians.device)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    # use the other views for rendering and supervision
         | 
| 141 | 
            +
                    results = self.gs.render(gaussians, data['cam_view'], data['cam_view_proj'], data['cam_pos'], bg_color=bg_color)
         | 
| 142 | 
            +
                    pred_images = results['image'] # [B, V, C, output_size, output_size]
         | 
| 143 | 
            +
                    pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    results['images_pred'] = pred_images
         | 
| 146 | 
            +
                    results['alphas_pred'] = pred_alphas
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    gt_images = data['images_output'] # [B, V, 3, output_size, output_size], ground-truth novel views
         | 
| 149 | 
            +
                    gt_masks = data['masks_output'] # [B, V, 1, output_size, output_size], ground-truth masks
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    gt_images = gt_images * gt_masks + bg_color.view(1, 1, 3, 1, 1) * (1 - gt_masks)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    loss_mse = F.mse_loss(pred_images, gt_images) + F.mse_loss(pred_alphas, gt_masks)
         | 
| 154 | 
            +
                    loss = loss + loss_mse
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    if self.opt.lambda_lpips > 0:
         | 
| 157 | 
            +
                        loss_lpips = self.lpips_loss(
         | 
| 158 | 
            +
                            # gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
         | 
| 159 | 
            +
                            # pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
         | 
| 160 | 
            +
                            # downsampled to at most 256 to reduce memory cost
         | 
| 161 | 
            +
                            F.interpolate(gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False), 
         | 
| 162 | 
            +
                            F.interpolate(pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
         | 
| 163 | 
            +
                        ).mean()
         | 
| 164 | 
            +
                        results['loss_lpips'] = loss_lpips
         | 
| 165 | 
            +
                        loss = loss + self.opt.lambda_lpips * loss_lpips
         | 
| 166 | 
            +
                        
         | 
| 167 | 
            +
                    results['loss'] = loss
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    # metric
         | 
| 170 | 
            +
                    with torch.no_grad():
         | 
| 171 | 
            +
                        psnr = -10 * torch.log10(torch.mean((pred_images.detach() - gt_images) ** 2))
         | 
| 172 | 
            +
                        results['psnr'] = psnr
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    return results
         | 
    	
        core/options.py
    ADDED
    
    | @@ -0,0 +1,120 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import tyro
         | 
| 2 | 
            +
            from dataclasses import dataclass
         | 
| 3 | 
            +
            from typing import Tuple, Literal, Dict, Optional
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            @dataclass
         | 
| 7 | 
            +
            class Options:
         | 
| 8 | 
            +
                ### model
         | 
| 9 | 
            +
                # Unet image input size
         | 
| 10 | 
            +
                input_size: int = 256
         | 
| 11 | 
            +
                # Unet definition
         | 
| 12 | 
            +
                down_channels: Tuple[int] = (64, 128, 256, 512, 1024, 1024)
         | 
| 13 | 
            +
                down_attention: Tuple[bool] = (False, False, False, True, True, True)
         | 
| 14 | 
            +
                mid_attention: bool = True
         | 
| 15 | 
            +
                up_channels: Tuple[int] = (1024, 1024, 512, 256)
         | 
| 16 | 
            +
                up_attention: Tuple[bool] = (True, True, True, False)
         | 
| 17 | 
            +
                # Unet output size, dependent on the input_size and U-Net structure!
         | 
| 18 | 
            +
                splat_size: int = 64
         | 
| 19 | 
            +
                # gaussian render size
         | 
| 20 | 
            +
                output_size: int = 256
         | 
| 21 | 
            +
                
         | 
| 22 | 
            +
                ### dataset
         | 
| 23 | 
            +
                # data mode (only support s3 now)
         | 
| 24 | 
            +
                data_mode: Literal['s3'] = 's3'
         | 
| 25 | 
            +
                # fovy of the dataset
         | 
| 26 | 
            +
                fovy: float = 49.1
         | 
| 27 | 
            +
                # camera near plane
         | 
| 28 | 
            +
                znear: float = 0.5
         | 
| 29 | 
            +
                # camera far plane
         | 
| 30 | 
            +
                zfar: float = 2.5
         | 
| 31 | 
            +
                # number of all views (input + output)
         | 
| 32 | 
            +
                num_views: int = 12
         | 
| 33 | 
            +
                # number of views
         | 
| 34 | 
            +
                num_input_views: int = 4
         | 
| 35 | 
            +
                # camera radius
         | 
| 36 | 
            +
                cam_radius: float = 1.5 # to better use [-1, 1]^3 space
         | 
| 37 | 
            +
                # num workers
         | 
| 38 | 
            +
                num_workers: int = 8
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                ### training
         | 
| 41 | 
            +
                # workspace
         | 
| 42 | 
            +
                workspace: str = './workspace'
         | 
| 43 | 
            +
                # resume 
         | 
| 44 | 
            +
                resume: Optional[str] = None
         | 
| 45 | 
            +
                # batch size (per-GPU)
         | 
| 46 | 
            +
                batch_size: int = 8
         | 
| 47 | 
            +
                # gradient accumulation
         | 
| 48 | 
            +
                gradient_accumulation_steps: int = 1
         | 
| 49 | 
            +
                # training epochs
         | 
| 50 | 
            +
                num_epochs: int = 30
         | 
| 51 | 
            +
                # lpips loss weight
         | 
| 52 | 
            +
                lambda_lpips: float = 1.0
         | 
| 53 | 
            +
                # gradient clip
         | 
| 54 | 
            +
                gradient_clip: float = 1.0
         | 
| 55 | 
            +
                # mixed precision
         | 
| 56 | 
            +
                mixed_precision: str = 'bf16'
         | 
| 57 | 
            +
                # learning rate
         | 
| 58 | 
            +
                lr: float = 4e-4
         | 
| 59 | 
            +
                # augmentation prob for grid distortion
         | 
| 60 | 
            +
                prob_grid_distortion: float = 0.5
         | 
| 61 | 
            +
                # augmentation prob for camera jitter
         | 
| 62 | 
            +
                prob_cam_jitter: float = 0.5
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                ### testing
         | 
| 65 | 
            +
                # test image path
         | 
| 66 | 
            +
                test_path: Optional[str] = None
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                ### misc
         | 
| 69 | 
            +
                # nvdiffrast backend setting
         | 
| 70 | 
            +
                force_cuda_rast: bool = False
         | 
| 71 | 
            +
                # render fancy video with gaussian scaling effect
         | 
| 72 | 
            +
                fancy_video: bool = False
         | 
| 73 | 
            +
                
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            # all the default settings
         | 
| 76 | 
            +
            config_defaults: Dict[str, Options] = {}
         | 
| 77 | 
            +
            config_doc: Dict[str, str] = {}
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            config_doc['lrm'] = 'the default settings for LGM'
         | 
| 80 | 
            +
            config_defaults['lrm'] = Options()
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            config_doc['small'] = 'small model with lower resolution Gaussians'
         | 
| 83 | 
            +
            config_defaults['small'] = Options(
         | 
| 84 | 
            +
                input_size=256,
         | 
| 85 | 
            +
                splat_size=64,
         | 
| 86 | 
            +
                output_size=256,
         | 
| 87 | 
            +
                batch_size=8,
         | 
| 88 | 
            +
                gradient_accumulation_steps=1,
         | 
| 89 | 
            +
                mixed_precision='bf16',
         | 
| 90 | 
            +
            )
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            config_doc['big'] = 'big model with higher resolution Gaussians'
         | 
| 93 | 
            +
            config_defaults['big'] = Options(
         | 
| 94 | 
            +
                input_size=256,
         | 
| 95 | 
            +
                up_channels=(1024, 1024, 512, 256, 128), # one more decoder
         | 
| 96 | 
            +
                up_attention=(True, True, True, False, False),
         | 
| 97 | 
            +
                splat_size=128,
         | 
| 98 | 
            +
                output_size=512, # render & supervise Gaussians at a higher resolution.
         | 
| 99 | 
            +
                batch_size=8,
         | 
| 100 | 
            +
                num_views=8,
         | 
| 101 | 
            +
                gradient_accumulation_steps=1,
         | 
| 102 | 
            +
                mixed_precision='bf16',
         | 
| 103 | 
            +
            )
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            config_doc['tiny'] = 'tiny model for ablation'
         | 
| 106 | 
            +
            config_defaults['tiny'] = Options(
         | 
| 107 | 
            +
                input_size=256, 
         | 
| 108 | 
            +
                down_channels=(32, 64, 128, 256, 512),
         | 
| 109 | 
            +
                down_attention=(False, False, False, False, True),
         | 
| 110 | 
            +
                up_channels=(512, 256, 128),
         | 
| 111 | 
            +
                up_attention=(True, False, False, False),
         | 
| 112 | 
            +
                splat_size=64,
         | 
| 113 | 
            +
                output_size=256,
         | 
| 114 | 
            +
                batch_size=16,
         | 
| 115 | 
            +
                num_views=8,
         | 
| 116 | 
            +
                gradient_accumulation_steps=1,
         | 
| 117 | 
            +
                mixed_precision='bf16',
         | 
| 118 | 
            +
            )
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)
         | 
    	
        core/provider_objaverse.py
    ADDED
    
    | @@ -0,0 +1,172 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import cv2
         | 
| 3 | 
            +
            import random
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import torch.nn as nn
         | 
| 8 | 
            +
            import torch.nn.functional as F
         | 
| 9 | 
            +
            import torchvision.transforms.functional as TF
         | 
| 10 | 
            +
            from torch.utils.data import Dataset
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import kiui
         | 
| 13 | 
            +
            from core.options import Options
         | 
| 14 | 
            +
            from core.utils import get_rays, grid_distortion, orbit_camera_jitter
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
         | 
| 17 | 
            +
            IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            class ObjaverseDataset(Dataset):
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def _warn(self):
         | 
| 23 | 
            +
                    raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                def __init__(self, opt: Options, training=True):
         | 
| 26 | 
            +
                    
         | 
| 27 | 
            +
                    self.opt = opt
         | 
| 28 | 
            +
                    self.training = training
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                    # TODO: remove this barrier
         | 
| 31 | 
            +
                    self._warn()
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                    # TODO: load the list of objects for training
         | 
| 34 | 
            +
                    self.items = []
         | 
| 35 | 
            +
                    with open('TODO: file containing the list', 'r') as f:
         | 
| 36 | 
            +
                        for line in f.readlines():
         | 
| 37 | 
            +
                            self.items.append(line.strip())
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    # naive split
         | 
| 40 | 
            +
                    if self.training:
         | 
| 41 | 
            +
                        self.items = self.items[:-self.opt.batch_size]
         | 
| 42 | 
            +
                    else:
         | 
| 43 | 
            +
                        self.items = self.items[-self.opt.batch_size:]
         | 
| 44 | 
            +
                    
         | 
| 45 | 
            +
                    # default camera intrinsics
         | 
| 46 | 
            +
                    self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
         | 
| 47 | 
            +
                    self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
         | 
| 48 | 
            +
                    self.proj_matrix[0, 0] = 1 / self.tan_half_fov
         | 
| 49 | 
            +
                    self.proj_matrix[1, 1] = 1 / self.tan_half_fov
         | 
| 50 | 
            +
                    self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
         | 
| 51 | 
            +
                    self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
         | 
| 52 | 
            +
                    self.proj_matrix[2, 3] = 1
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
                def __len__(self):
         | 
| 56 | 
            +
                    return len(self.items)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def __getitem__(self, idx):
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    uid = self.items[idx]
         | 
| 61 | 
            +
                    results = {}
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    # load num_views images
         | 
| 64 | 
            +
                    images = []
         | 
| 65 | 
            +
                    masks = []
         | 
| 66 | 
            +
                    cam_poses = []
         | 
| 67 | 
            +
                    
         | 
| 68 | 
            +
                    vid_cnt = 0
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    # TODO: choose views, based on your rendering settings
         | 
| 71 | 
            +
                    if self.training:
         | 
| 72 | 
            +
                        # input views are in (36, 72), other views are randomly selected
         | 
| 73 | 
            +
                        vids = np.random.permutation(np.arange(36, 73))[:self.opt.num_input_views].tolist() + np.random.permutation(100).tolist()
         | 
| 74 | 
            +
                    else:
         | 
| 75 | 
            +
                        # fixed views
         | 
| 76 | 
            +
                        vids = np.arange(36, 73, 4).tolist() + np.arange(100).tolist()
         | 
| 77 | 
            +
                    
         | 
| 78 | 
            +
                    for vid in vids:
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                        image_path = os.path.join(uid, 'rgb', f'{vid:03d}.png')
         | 
| 81 | 
            +
                        camera_path = os.path.join(uid, 'pose', f'{vid:03d}.txt')
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                        try:
         | 
| 84 | 
            +
                            # TODO: load data (modify self.client here)
         | 
| 85 | 
            +
                            image = np.frombuffer(self.client.get(image_path), np.uint8)
         | 
| 86 | 
            +
                            image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
         | 
| 87 | 
            +
                            c2w = [float(t) for t in self.client.get(camera_path).decode().strip().split(' ')]
         | 
| 88 | 
            +
                            c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4)
         | 
| 89 | 
            +
                        except Exception as e:
         | 
| 90 | 
            +
                            # print(f'[WARN] dataset {uid} {vid}: {e}')
         | 
| 91 | 
            +
                            continue
         | 
| 92 | 
            +
                        
         | 
| 93 | 
            +
                        # TODO: you may have a different camera system
         | 
| 94 | 
            +
                        # blender world + opencv cam --> opengl world & cam
         | 
| 95 | 
            +
                        c2w[1] *= -1
         | 
| 96 | 
            +
                        c2w[[1, 2]] = c2w[[2, 1]]
         | 
| 97 | 
            +
                        c2w[:3, 1:3] *= -1 # invert up and forward direction
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                        # scale up radius to fully use the [-1, 1]^3 space!
         | 
| 100 | 
            +
                        c2w[:3, 3] *= self.opt.cam_radius / 1.5 # 1.5 is the default scale
         | 
| 101 | 
            +
                      
         | 
| 102 | 
            +
                        image = image.permute(2, 0, 1) # [4, 512, 512]
         | 
| 103 | 
            +
                        mask = image[3:4] # [1, 512, 512]
         | 
| 104 | 
            +
                        image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
         | 
| 105 | 
            +
                        image = image[[2,1,0]].contiguous() # bgr to rgb
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                        images.append(image)
         | 
| 108 | 
            +
                        masks.append(mask.squeeze(0))
         | 
| 109 | 
            +
                        cam_poses.append(c2w)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                        vid_cnt += 1
         | 
| 112 | 
            +
                        if vid_cnt == self.opt.num_views:
         | 
| 113 | 
            +
                            break
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    if vid_cnt < self.opt.num_views:
         | 
| 116 | 
            +
                        print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
         | 
| 117 | 
            +
                        n = self.opt.num_views - vid_cnt
         | 
| 118 | 
            +
                        images = images + [images[-1]] * n
         | 
| 119 | 
            +
                        masks = masks + [masks[-1]] * n
         | 
| 120 | 
            +
                        cam_poses = cam_poses + [cam_poses[-1]] * n
         | 
| 121 | 
            +
                      
         | 
| 122 | 
            +
                    images = torch.stack(images, dim=0) # [V, C, H, W]
         | 
| 123 | 
            +
                    masks = torch.stack(masks, dim=0) # [V, H, W]
         | 
| 124 | 
            +
                    cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    # normalized camera feats as in paper (transform the first pose to a fixed position)
         | 
| 127 | 
            +
                    transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
         | 
| 128 | 
            +
                    cam_poses = transform.unsqueeze(0) @ cam_poses  # [V, 4, 4]
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    images_input = F.interpolate(images[:self.opt.num_input_views].clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
         | 
| 131 | 
            +
                    cam_poses_input = cam_poses[:self.opt.num_input_views].clone()
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    # data augmentation
         | 
| 134 | 
            +
                    if self.training:
         | 
| 135 | 
            +
                        # apply random grid distortion to simulate 3D inconsistency
         | 
| 136 | 
            +
                        if random.random() < self.opt.prob_grid_distortion:
         | 
| 137 | 
            +
                            images_input[1:] = grid_distortion(images_input[1:])
         | 
| 138 | 
            +
                        # apply camera jittering (only to input!)
         | 
| 139 | 
            +
                        if random.random() < self.opt.prob_cam_jitter:
         | 
| 140 | 
            +
                            cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:])
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    # resize render ground-truth images, range still in [0, 1]
         | 
| 145 | 
            +
                    results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size]
         | 
| 146 | 
            +
                    results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size]
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    # build rays for input views
         | 
| 149 | 
            +
                    rays_embeddings = []
         | 
| 150 | 
            +
                    for i in range(self.opt.num_input_views):
         | 
| 151 | 
            +
                        rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
         | 
| 152 | 
            +
                        rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
         | 
| 153 | 
            +
                        rays_embeddings.append(rays_plucker)
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                 
         | 
| 156 | 
            +
                    rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w]
         | 
| 157 | 
            +
                    final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W]
         | 
| 158 | 
            +
                    results['input'] = final_input
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    # opengl to colmap camera for gaussian renderer
         | 
| 161 | 
            +
                    cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
         | 
| 162 | 
            +
                    
         | 
| 163 | 
            +
                    # cameras needed by gaussian rasterizer
         | 
| 164 | 
            +
                    cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
         | 
| 165 | 
            +
                    cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
         | 
| 166 | 
            +
                    cam_pos = - cam_poses[:, :3, 3] # [V, 3]
         | 
| 167 | 
            +
                    
         | 
| 168 | 
            +
                    results['cam_view'] = cam_view
         | 
| 169 | 
            +
                    results['cam_view_proj'] = cam_view_proj
         | 
| 170 | 
            +
                    results['cam_pos'] = cam_pos
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    return results
         | 
    	
        core/unet.py
    ADDED
    
    | @@ -0,0 +1,319 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            from typing import Tuple, Optional, Literal
         | 
| 7 | 
            +
            from functools import partial
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from core.attention import MemEffAttention, MemEffCrossAttention
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            class MVAttention(nn.Module):
         | 
| 12 | 
            +
                def __init__(
         | 
| 13 | 
            +
                    self, 
         | 
| 14 | 
            +
                    dim: int,
         | 
| 15 | 
            +
                    num_heads: int = 8,
         | 
| 16 | 
            +
                    qkv_bias: bool = False,
         | 
| 17 | 
            +
                    proj_bias: bool = True,
         | 
| 18 | 
            +
                    attn_drop: float = 0.0,
         | 
| 19 | 
            +
                    proj_drop: float = 0.0,
         | 
| 20 | 
            +
                    groups: int = 32,
         | 
| 21 | 
            +
                    eps: float = 1e-5,
         | 
| 22 | 
            +
                    residual: bool = True,
         | 
| 23 | 
            +
                    skip_scale: float = 1,
         | 
| 24 | 
            +
                    num_frames: int = 4, # WARN: hardcoded!
         | 
| 25 | 
            +
                ):
         | 
| 26 | 
            +
                    super().__init__()
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                    self.residual = residual
         | 
| 29 | 
            +
                    self.skip_scale = skip_scale
         | 
| 30 | 
            +
                    self.num_frames = num_frames
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                    self.norm = nn.GroupNorm(num_groups=groups, num_channels=dim, eps=eps, affine=True)
         | 
| 33 | 
            +
                    self.attn = MemEffAttention(dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                def forward(self, x):
         | 
| 36 | 
            +
                    # x: [B*V, C, H, W]
         | 
| 37 | 
            +
                    BV, C, H, W = x.shape
         | 
| 38 | 
            +
                    B = BV // self.num_frames # assert BV % self.num_frames == 0
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    res = x
         | 
| 41 | 
            +
                    x = self.norm(x)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    x = x.reshape(B, self.num_frames, C, H, W).permute(0, 1, 3, 4, 2).reshape(B, -1, C)
         | 
| 44 | 
            +
                    x = self.attn(x)
         | 
| 45 | 
            +
                    x = x.reshape(B, self.num_frames, H, W, C).permute(0, 1, 4, 2, 3).reshape(BV, C, H, W)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    if self.residual:
         | 
| 48 | 
            +
                        x = (x + res) * self.skip_scale
         | 
| 49 | 
            +
                    return x
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            class ResnetBlock(nn.Module):
         | 
| 52 | 
            +
                def __init__(
         | 
| 53 | 
            +
                    self,
         | 
| 54 | 
            +
                    in_channels: int,
         | 
| 55 | 
            +
                    out_channels: int,
         | 
| 56 | 
            +
                    resample: Literal['default', 'up', 'down'] = 'default',
         | 
| 57 | 
            +
                    groups: int = 32,
         | 
| 58 | 
            +
                    eps: float = 1e-5,
         | 
| 59 | 
            +
                    skip_scale: float = 1, # multiplied to output
         | 
| 60 | 
            +
                ):
         | 
| 61 | 
            +
                    super().__init__()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    self.in_channels = in_channels
         | 
| 64 | 
            +
                    self.out_channels = out_channels
         | 
| 65 | 
            +
                    self.skip_scale = skip_scale
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
         | 
| 68 | 
            +
                    self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                    self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
         | 
| 71 | 
            +
                    self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    self.act = F.silu
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    self.resample = None
         | 
| 76 | 
            +
                    if resample == 'up':
         | 
| 77 | 
            +
                        self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
         | 
| 78 | 
            +
                    elif resample == 'down':
         | 
| 79 | 
            +
                        self.resample = nn.AvgPool2d(kernel_size=2, stride=2)
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    self.shortcut = nn.Identity()
         | 
| 82 | 
            +
                    if self.in_channels != self.out_channels:
         | 
| 83 | 
            +
                        self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                
         | 
| 86 | 
            +
                def forward(self, x):
         | 
| 87 | 
            +
                    res = x
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    x = self.norm1(x)
         | 
| 90 | 
            +
                    x = self.act(x)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    if self.resample:
         | 
| 93 | 
            +
                        res = self.resample(res)
         | 
| 94 | 
            +
                        x = self.resample(x)
         | 
| 95 | 
            +
                    
         | 
| 96 | 
            +
                    x = self.conv1(x)
         | 
| 97 | 
            +
                    x = self.norm2(x)
         | 
| 98 | 
            +
                    x = self.act(x)
         | 
| 99 | 
            +
                    x = self.conv2(x)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    x = (x + self.shortcut(res)) * self.skip_scale
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    return x
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            class DownBlock(nn.Module):
         | 
| 106 | 
            +
                def __init__(
         | 
| 107 | 
            +
                    self,
         | 
| 108 | 
            +
                    in_channels: int,
         | 
| 109 | 
            +
                    out_channels: int,
         | 
| 110 | 
            +
                    num_layers: int = 1,
         | 
| 111 | 
            +
                    downsample: bool = True,
         | 
| 112 | 
            +
                    attention: bool = True,
         | 
| 113 | 
            +
                    attention_heads: int = 16,
         | 
| 114 | 
            +
                    skip_scale: float = 1,
         | 
| 115 | 
            +
                ):
         | 
| 116 | 
            +
                    super().__init__()
         | 
| 117 | 
            +
             
         | 
| 118 | 
            +
                    nets = []
         | 
| 119 | 
            +
                    attns = []
         | 
| 120 | 
            +
                    for i in range(num_layers):
         | 
| 121 | 
            +
                        in_channels = in_channels if i == 0 else out_channels
         | 
| 122 | 
            +
                        nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale))
         | 
| 123 | 
            +
                        if attention:
         | 
| 124 | 
            +
                            attns.append(MVAttention(out_channels, attention_heads, skip_scale=skip_scale))
         | 
| 125 | 
            +
                        else:
         | 
| 126 | 
            +
                            attns.append(None)
         | 
| 127 | 
            +
                    self.nets = nn.ModuleList(nets)
         | 
| 128 | 
            +
                    self.attns = nn.ModuleList(attns)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    self.downsample = None
         | 
| 131 | 
            +
                    if downsample:
         | 
| 132 | 
            +
                        self.downsample = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                def forward(self, x):
         | 
| 135 | 
            +
                    xs = []
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    for attn, net in zip(self.attns, self.nets):
         | 
| 138 | 
            +
                        x = net(x)
         | 
| 139 | 
            +
                        if attn:
         | 
| 140 | 
            +
                            x = attn(x)
         | 
| 141 | 
            +
                        xs.append(x)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    if self.downsample:
         | 
| 144 | 
            +
                        x = self.downsample(x)
         | 
| 145 | 
            +
                        xs.append(x)
         | 
| 146 | 
            +
              
         | 
| 147 | 
            +
                    return x, xs
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            class MidBlock(nn.Module):
         | 
| 151 | 
            +
                def __init__(
         | 
| 152 | 
            +
                    self,
         | 
| 153 | 
            +
                    in_channels: int,
         | 
| 154 | 
            +
                    num_layers: int = 1,
         | 
| 155 | 
            +
                    attention: bool = True,
         | 
| 156 | 
            +
                    attention_heads: int = 16,
         | 
| 157 | 
            +
                    skip_scale: float = 1,
         | 
| 158 | 
            +
                ):
         | 
| 159 | 
            +
                    super().__init__()
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    nets = []
         | 
| 162 | 
            +
                    attns = []
         | 
| 163 | 
            +
                    # first layer
         | 
| 164 | 
            +
                    nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
         | 
| 165 | 
            +
                    # more layers
         | 
| 166 | 
            +
                    for i in range(num_layers):
         | 
| 167 | 
            +
                        nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
         | 
| 168 | 
            +
                        if attention:
         | 
| 169 | 
            +
                            attns.append(MVAttention(in_channels, attention_heads, skip_scale=skip_scale))
         | 
| 170 | 
            +
                        else:
         | 
| 171 | 
            +
                            attns.append(None)
         | 
| 172 | 
            +
                    self.nets = nn.ModuleList(nets)
         | 
| 173 | 
            +
                    self.attns = nn.ModuleList(attns)
         | 
| 174 | 
            +
                    
         | 
| 175 | 
            +
                def forward(self, x):
         | 
| 176 | 
            +
                    x = self.nets[0](x)
         | 
| 177 | 
            +
                    for attn, net in zip(self.attns, self.nets[1:]):
         | 
| 178 | 
            +
                        if attn:
         | 
| 179 | 
            +
                            x = attn(x)
         | 
| 180 | 
            +
                        x = net(x)
         | 
| 181 | 
            +
                    return x
         | 
| 182 | 
            +
             | 
| 183 | 
            +
             | 
| 184 | 
            +
            class UpBlock(nn.Module):
         | 
| 185 | 
            +
                def __init__(
         | 
| 186 | 
            +
                    self,
         | 
| 187 | 
            +
                    in_channels: int,
         | 
| 188 | 
            +
                    prev_out_channels: int,
         | 
| 189 | 
            +
                    out_channels: int,
         | 
| 190 | 
            +
                    num_layers: int = 1,
         | 
| 191 | 
            +
                    upsample: bool = True,
         | 
| 192 | 
            +
                    attention: bool = True,
         | 
| 193 | 
            +
                    attention_heads: int = 16,
         | 
| 194 | 
            +
                    skip_scale: float = 1,
         | 
| 195 | 
            +
                ):
         | 
| 196 | 
            +
                    super().__init__()
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    nets = []
         | 
| 199 | 
            +
                    attns = []
         | 
| 200 | 
            +
                    for i in range(num_layers):
         | 
| 201 | 
            +
                        cin = in_channels if i == 0 else out_channels
         | 
| 202 | 
            +
                        cskip = prev_out_channels if (i == num_layers - 1) else out_channels
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                        nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale))
         | 
| 205 | 
            +
                        if attention:
         | 
| 206 | 
            +
                            attns.append(MVAttention(out_channels, attention_heads, skip_scale=skip_scale))
         | 
| 207 | 
            +
                        else:
         | 
| 208 | 
            +
                            attns.append(None)
         | 
| 209 | 
            +
                    self.nets = nn.ModuleList(nets)
         | 
| 210 | 
            +
                    self.attns = nn.ModuleList(attns)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    self.upsample = None
         | 
| 213 | 
            +
                    if upsample:
         | 
| 214 | 
            +
                        self.upsample = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                def forward(self, x, xs):
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    for attn, net in zip(self.attns, self.nets):
         | 
| 219 | 
            +
                        res_x = xs[-1]
         | 
| 220 | 
            +
                        xs = xs[:-1]
         | 
| 221 | 
            +
                        x = torch.cat([x, res_x], dim=1)
         | 
| 222 | 
            +
                        x = net(x)
         | 
| 223 | 
            +
                        if attn:
         | 
| 224 | 
            +
                            x = attn(x)
         | 
| 225 | 
            +
                        
         | 
| 226 | 
            +
                    if self.upsample:
         | 
| 227 | 
            +
                        x = F.interpolate(x, scale_factor=2.0, mode='nearest')
         | 
| 228 | 
            +
                        x = self.upsample(x)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    return x
         | 
| 231 | 
            +
             | 
| 232 | 
            +
             | 
| 233 | 
            +
            # it could be asymmetric!
         | 
| 234 | 
            +
            class UNet(nn.Module):
         | 
| 235 | 
            +
                def __init__(
         | 
| 236 | 
            +
                    self,
         | 
| 237 | 
            +
                    in_channels: int = 3,
         | 
| 238 | 
            +
                    out_channels: int = 3,
         | 
| 239 | 
            +
                    down_channels: Tuple[int] = (64, 128, 256, 512, 1024),
         | 
| 240 | 
            +
                    down_attention: Tuple[bool] = (False, False, False, True, True),
         | 
| 241 | 
            +
                    mid_attention: bool = True,
         | 
| 242 | 
            +
                    up_channels: Tuple[int] = (1024, 512, 256),
         | 
| 243 | 
            +
                    up_attention: Tuple[bool] = (True, True, False),
         | 
| 244 | 
            +
                    layers_per_block: int = 2,
         | 
| 245 | 
            +
                    skip_scale: float = np.sqrt(0.5),
         | 
| 246 | 
            +
                ):
         | 
| 247 | 
            +
                    super().__init__()
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    # first
         | 
| 250 | 
            +
                    self.conv_in = nn.Conv2d(in_channels, down_channels[0], kernel_size=3, stride=1, padding=1)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    # down
         | 
| 253 | 
            +
                    down_blocks = []
         | 
| 254 | 
            +
                    cout = down_channels[0]
         | 
| 255 | 
            +
                    for i in range(len(down_channels)):
         | 
| 256 | 
            +
                        cin = cout
         | 
| 257 | 
            +
                        cout = down_channels[i]
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                        down_blocks.append(DownBlock(
         | 
| 260 | 
            +
                            cin, cout, 
         | 
| 261 | 
            +
                            num_layers=layers_per_block, 
         | 
| 262 | 
            +
                            downsample=(i != len(down_channels) - 1), # not final layer
         | 
| 263 | 
            +
                            attention=down_attention[i],
         | 
| 264 | 
            +
                            skip_scale=skip_scale,
         | 
| 265 | 
            +
                        ))
         | 
| 266 | 
            +
                    self.down_blocks = nn.ModuleList(down_blocks)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    # mid
         | 
| 269 | 
            +
                    self.mid_block = MidBlock(down_channels[-1], attention=mid_attention, skip_scale=skip_scale)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    # up
         | 
| 272 | 
            +
                    up_blocks = []
         | 
| 273 | 
            +
                    cout = up_channels[0]
         | 
| 274 | 
            +
                    for i in range(len(up_channels)):
         | 
| 275 | 
            +
                        cin = cout
         | 
| 276 | 
            +
                        cout = up_channels[i]
         | 
| 277 | 
            +
                        cskip = down_channels[max(-2 - i, -len(down_channels))] # for assymetric
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                        up_blocks.append(UpBlock(
         | 
| 280 | 
            +
                            cin, cskip, cout, 
         | 
| 281 | 
            +
                            num_layers=layers_per_block + 1, # one more layer for up
         | 
| 282 | 
            +
                            upsample=(i != len(up_channels) - 1), # not final layer
         | 
| 283 | 
            +
                            attention=up_attention[i],
         | 
| 284 | 
            +
                            skip_scale=skip_scale,
         | 
| 285 | 
            +
                        ))
         | 
| 286 | 
            +
                    self.up_blocks = nn.ModuleList(up_blocks)
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    # last
         | 
| 289 | 
            +
                    self.norm_out = nn.GroupNorm(num_channels=up_channels[-1], num_groups=32, eps=1e-5)
         | 
| 290 | 
            +
                    self.conv_out = nn.Conv2d(up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1)
         | 
| 291 | 
            +
             | 
| 292 | 
            +
             | 
| 293 | 
            +
                def forward(self, x):
         | 
| 294 | 
            +
                    # x: [B, Cin, H, W]
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    # first
         | 
| 297 | 
            +
                    x = self.conv_in(x)
         | 
| 298 | 
            +
                    
         | 
| 299 | 
            +
                    # down
         | 
| 300 | 
            +
                    xss = [x]
         | 
| 301 | 
            +
                    for block in self.down_blocks:
         | 
| 302 | 
            +
                        x, xs = block(x)
         | 
| 303 | 
            +
                        xss.extend(xs)
         | 
| 304 | 
            +
                    
         | 
| 305 | 
            +
                    # mid
         | 
| 306 | 
            +
                    x = self.mid_block(x)
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    # up
         | 
| 309 | 
            +
                    for block in self.up_blocks:
         | 
| 310 | 
            +
                        xs = xss[-len(block.nets):]
         | 
| 311 | 
            +
                        xss = xss[:-len(block.nets)]
         | 
| 312 | 
            +
                        x = block(x, xs)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    # last
         | 
| 315 | 
            +
                    x = self.norm_out(x)
         | 
| 316 | 
            +
                    x = F.silu(x)
         | 
| 317 | 
            +
                    x = self.conv_out(x) # [B, Cout, H', W']
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    return x
         | 
    	
        core/utils.py
    ADDED
    
    | @@ -0,0 +1,109 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import numpy as np
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn as nn
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import roma
         | 
| 8 | 
            +
            from kiui.op import safe_normalize
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            def get_rays(pose, h, w, fovy, opengl=True):
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                x, y = torch.meshgrid(
         | 
| 13 | 
            +
                    torch.arange(w, device=pose.device),
         | 
| 14 | 
            +
                    torch.arange(h, device=pose.device),
         | 
| 15 | 
            +
                    indexing="xy",
         | 
| 16 | 
            +
                )
         | 
| 17 | 
            +
                x = x.flatten()
         | 
| 18 | 
            +
                y = y.flatten()
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                cx = w * 0.5
         | 
| 21 | 
            +
                cy = h * 0.5
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                camera_dirs = F.pad(
         | 
| 26 | 
            +
                    torch.stack(
         | 
| 27 | 
            +
                        [
         | 
| 28 | 
            +
                            (x - cx + 0.5) / focal,
         | 
| 29 | 
            +
                            (y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
         | 
| 30 | 
            +
                        ],
         | 
| 31 | 
            +
                        dim=-1,
         | 
| 32 | 
            +
                    ),
         | 
| 33 | 
            +
                    (0, 1),
         | 
| 34 | 
            +
                    value=(-1.0 if opengl else 1.0),
         | 
| 35 | 
            +
                )  # [hw, 3]
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1)  # [hw, 3]
         | 
| 38 | 
            +
                rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3]
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                rays_o = rays_o.view(h, w, 3)
         | 
| 41 | 
            +
                rays_d = safe_normalize(rays_d).view(h, w, 3)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                return rays_o, rays_d
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            def orbit_camera_jitter(poses, strength=0.1):
         | 
| 46 | 
            +
                # poses: [B, 4, 4], assume orbit camera in opengl format
         | 
| 47 | 
            +
                # random orbital rotate
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                B = poses.shape[0]
         | 
| 50 | 
            +
                rotvec_x = poses[:, :3, 1] * strength * np.pi * (torch.rand(B, 1, device=poses.device) * 2 - 1)
         | 
| 51 | 
            +
                rotvec_y = poses[:, :3, 0] * strength * np.pi / 2 * (torch.rand(B, 1, device=poses.device) * 2 - 1)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                rot = roma.rotvec_to_rotmat(rotvec_x) @ roma.rotvec_to_rotmat(rotvec_y)
         | 
| 54 | 
            +
                R = rot @ poses[:, :3, :3]
         | 
| 55 | 
            +
                T = rot @ poses[:, :3, 3:]
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                new_poses = poses.clone()
         | 
| 58 | 
            +
                new_poses[:, :3, :3] = R
         | 
| 59 | 
            +
                new_poses[:, :3, 3:] = T
         | 
| 60 | 
            +
                
         | 
| 61 | 
            +
                return new_poses
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            def grid_distortion(images, strength=0.5):
         | 
| 64 | 
            +
                # images: [B, C, H, W]
         | 
| 65 | 
            +
                # num_steps: int, grid resolution for distortion
         | 
| 66 | 
            +
                # strength: float in [0, 1], strength of distortion
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                B, C, H, W = images.shape
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                num_steps = np.random.randint(8, 17)
         | 
| 71 | 
            +
                grid_steps = torch.linspace(-1, 1, num_steps)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                # have to loop batch...
         | 
| 74 | 
            +
                grids = []
         | 
| 75 | 
            +
                for b in range(B):
         | 
| 76 | 
            +
                    # construct displacement
         | 
| 77 | 
            +
                    x_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive
         | 
| 78 | 
            +
                    x_steps = (x_steps + strength * (torch.rand_like(x_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb
         | 
| 79 | 
            +
                    x_steps = (x_steps * W).long() # [num_steps]
         | 
| 80 | 
            +
                    x_steps[0] = 0
         | 
| 81 | 
            +
                    x_steps[-1] = W
         | 
| 82 | 
            +
                    xs = []
         | 
| 83 | 
            +
                    for i in range(num_steps - 1):
         | 
| 84 | 
            +
                        xs.append(torch.linspace(grid_steps[i], grid_steps[i + 1], x_steps[i + 1] - x_steps[i]))
         | 
| 85 | 
            +
                    xs = torch.cat(xs, dim=0) # [W]
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    y_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive
         | 
| 88 | 
            +
                    y_steps = (y_steps + strength * (torch.rand_like(y_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb
         | 
| 89 | 
            +
                    y_steps = (y_steps * H).long() # [num_steps]
         | 
| 90 | 
            +
                    y_steps[0] = 0
         | 
| 91 | 
            +
                    y_steps[-1] = H
         | 
| 92 | 
            +
                    ys = []
         | 
| 93 | 
            +
                    for i in range(num_steps - 1):
         | 
| 94 | 
            +
                        ys.append(torch.linspace(grid_steps[i], grid_steps[i + 1], y_steps[i + 1] - y_steps[i]))
         | 
| 95 | 
            +
                    ys = torch.cat(ys, dim=0) # [H]
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    # construct grid
         | 
| 98 | 
            +
                    grid_x, grid_y = torch.meshgrid(xs, ys, indexing='xy') # [H, W]
         | 
| 99 | 
            +
                    grid = torch.stack([grid_x, grid_y], dim=-1) # [H, W, 2]
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    grids.append(grid)
         | 
| 102 | 
            +
                
         | 
| 103 | 
            +
                grids = torch.stack(grids, dim=0).to(images.device) # [B, H, W, 2]
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                # grid sample
         | 
| 106 | 
            +
                images = F.grid_sample(images, grids, align_corners=False)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                return images
         | 
| 109 | 
            +
             | 
    	
        data_test/anya_rgba.png
    ADDED
    
    |   | 
    	
        data_test/bird_rgba.png
    ADDED
    
    |   | 
    	
        data_test/catstatue_rgba.png
    ADDED
    
    |   | 
    	
        mvdream/__pycache__/mv_unet.cpython-39.pyc
    ADDED
    
    | Binary file (23.4 kB). View file | 
|  | 
    	
        mvdream/__pycache__/pipeline_mvdream.cpython-39.pyc
    ADDED
    
    | Binary file (15.7 kB). View file | 
|  | 
    	
        mvdream/mv_unet.py
    ADDED
    
    | @@ -0,0 +1,1005 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from inspect import isfunction
         | 
| 4 | 
            +
            from typing import Optional, Any, List
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import torch.nn as nn
         | 
| 8 | 
            +
            import torch.nn.functional as F
         | 
| 9 | 
            +
            from einops import rearrange, repeat
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            from diffusers.configuration_utils import ConfigMixin
         | 
| 12 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            # require xformers!
         | 
| 15 | 
            +
            import xformers
         | 
| 16 | 
            +
            import xformers.ops
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from kiui.cam import orbit_camera
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            def get_camera(
         | 
| 21 | 
            +
                num_frames, elevation=0, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
         | 
| 22 | 
            +
            ):
         | 
| 23 | 
            +
                angle_gap = azimuth_span / num_frames
         | 
| 24 | 
            +
                cameras = []
         | 
| 25 | 
            +
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| 26 | 
            +
                    
         | 
| 27 | 
            +
                    pose = orbit_camera(elevation, azimuth, radius=1) # [4, 4]
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    # opengl to blender
         | 
| 30 | 
            +
                    if blender_coord:
         | 
| 31 | 
            +
                        pose[2] *= -1
         | 
| 32 | 
            +
                        pose[[1, 2]] = pose[[2, 1]]
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    cameras.append(pose.flatten())
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                if extra_view:
         | 
| 37 | 
            +
                    cameras.append(np.zeros_like(cameras[0]))
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
                Create sinusoidal timestep embeddings.
         | 
| 45 | 
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 46 | 
            +
                                  These may be fractional.
         | 
| 47 | 
            +
                :param dim: the dimension of the output.
         | 
| 48 | 
            +
                :param max_period: controls the minimum frequency of the embeddings.
         | 
| 49 | 
            +
                :return: an [N x dim] Tensor of positional embeddings.
         | 
| 50 | 
            +
                """
         | 
| 51 | 
            +
                if not repeat_only:
         | 
| 52 | 
            +
                    half = dim // 2
         | 
| 53 | 
            +
                    freqs = torch.exp(
         | 
| 54 | 
            +
                        -math.log(max_period)
         | 
| 55 | 
            +
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         | 
| 56 | 
            +
                        / half
         | 
| 57 | 
            +
                    ).to(device=timesteps.device)
         | 
| 58 | 
            +
                    args = timesteps[:, None] * freqs[None]
         | 
| 59 | 
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 60 | 
            +
                    if dim % 2:
         | 
| 61 | 
            +
                        embedding = torch.cat(
         | 
| 62 | 
            +
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         | 
| 63 | 
            +
                        )
         | 
| 64 | 
            +
                else:
         | 
| 65 | 
            +
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         | 
| 66 | 
            +
                # import pdb; pdb.set_trace()
         | 
| 67 | 
            +
                return embedding
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            def zero_module(module):
         | 
| 71 | 
            +
                """
         | 
| 72 | 
            +
                Zero out the parameters of a module and return it.
         | 
| 73 | 
            +
                """
         | 
| 74 | 
            +
                for p in module.parameters():
         | 
| 75 | 
            +
                    p.detach().zero_()
         | 
| 76 | 
            +
                return module
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def conv_nd(dims, *args, **kwargs):
         | 
| 80 | 
            +
                """
         | 
| 81 | 
            +
                Create a 1D, 2D, or 3D convolution module.
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                if dims == 1:
         | 
| 84 | 
            +
                    return nn.Conv1d(*args, **kwargs)
         | 
| 85 | 
            +
                elif dims == 2:
         | 
| 86 | 
            +
                    return nn.Conv2d(*args, **kwargs)
         | 
| 87 | 
            +
                elif dims == 3:
         | 
| 88 | 
            +
                    return nn.Conv3d(*args, **kwargs)
         | 
| 89 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 93 | 
            +
                """
         | 
| 94 | 
            +
                Create a 1D, 2D, or 3D average pooling module.
         | 
| 95 | 
            +
                """
         | 
| 96 | 
            +
                if dims == 1:
         | 
| 97 | 
            +
                    return nn.AvgPool1d(*args, **kwargs)
         | 
| 98 | 
            +
                elif dims == 2:
         | 
| 99 | 
            +
                    return nn.AvgPool2d(*args, **kwargs)
         | 
| 100 | 
            +
                elif dims == 3:
         | 
| 101 | 
            +
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 102 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            def default(val, d):
         | 
| 106 | 
            +
                if val is not None:
         | 
| 107 | 
            +
                    return val
         | 
| 108 | 
            +
                return d() if isfunction(d) else d
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            class GEGLU(nn.Module):
         | 
| 112 | 
            +
                def __init__(self, dim_in, dim_out):
         | 
| 113 | 
            +
                    super().__init__()
         | 
| 114 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def forward(self, x):
         | 
| 117 | 
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 118 | 
            +
                    return x * F.gelu(gate)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
             | 
| 121 | 
            +
            class FeedForward(nn.Module):
         | 
| 122 | 
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         | 
| 123 | 
            +
                    super().__init__()
         | 
| 124 | 
            +
                    inner_dim = int(dim * mult)
         | 
| 125 | 
            +
                    dim_out = default(dim_out, dim)
         | 
| 126 | 
            +
                    project_in = (
         | 
| 127 | 
            +
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         | 
| 128 | 
            +
                        if not glu
         | 
| 129 | 
            +
                        else GEGLU(dim, inner_dim)
         | 
| 130 | 
            +
                    )
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    self.net = nn.Sequential(
         | 
| 133 | 
            +
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         | 
| 134 | 
            +
                    )
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def forward(self, x):
         | 
| 137 | 
            +
                    return self.net(x)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 141 | 
            +
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 142 | 
            +
                def __init__(
         | 
| 143 | 
            +
                        self, 
         | 
| 144 | 
            +
                        query_dim, 
         | 
| 145 | 
            +
                        context_dim=None, 
         | 
| 146 | 
            +
                        heads=8, 
         | 
| 147 | 
            +
                        dim_head=64, 
         | 
| 148 | 
            +
                        dropout=0.0,
         | 
| 149 | 
            +
                        ip_dim=0,
         | 
| 150 | 
            +
                        ip_weight=1,
         | 
| 151 | 
            +
                    ):
         | 
| 152 | 
            +
                    super().__init__()
         | 
| 153 | 
            +
                    
         | 
| 154 | 
            +
                    inner_dim = dim_head * heads
         | 
| 155 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    self.heads = heads
         | 
| 158 | 
            +
                    self.dim_head = dim_head
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    self.ip_dim = ip_dim
         | 
| 161 | 
            +
                    self.ip_weight = ip_weight
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    if self.ip_dim > 0:
         | 
| 164 | 
            +
                        self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 165 | 
            +
                        self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 168 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 169 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    self.to_out = nn.Sequential(
         | 
| 172 | 
            +
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 173 | 
            +
                    )
         | 
| 174 | 
            +
                    self.attention_op: Optional[Any] = None
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def forward(self, x, context=None):
         | 
| 177 | 
            +
                    q = self.to_q(x)
         | 
| 178 | 
            +
                    context = default(context, x)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    if self.ip_dim > 0:
         | 
| 181 | 
            +
                        # context: [B, 77 + 16(ip), 1024]
         | 
| 182 | 
            +
                        token_len = context.shape[1]
         | 
| 183 | 
            +
                        context_ip = context[:, -self.ip_dim :, :]
         | 
| 184 | 
            +
                        k_ip = self.to_k_ip(context_ip)
         | 
| 185 | 
            +
                        v_ip = self.to_v_ip(context_ip)
         | 
| 186 | 
            +
                        context = context[:, : (token_len - self.ip_dim), :]
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    k = self.to_k(context)
         | 
| 189 | 
            +
                    v = self.to_v(context)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    b, _, _ = q.shape
         | 
| 192 | 
            +
                    q, k, v = map(
         | 
| 193 | 
            +
                        lambda t: t.unsqueeze(3)
         | 
| 194 | 
            +
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 195 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 196 | 
            +
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 197 | 
            +
                        .contiguous(),
         | 
| 198 | 
            +
                        (q, k, v),
         | 
| 199 | 
            +
                    )
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    # actually compute the attention, what we cannot get enough of
         | 
| 202 | 
            +
                    out = xformers.ops.memory_efficient_attention(
         | 
| 203 | 
            +
                        q, k, v, attn_bias=None, op=self.attention_op
         | 
| 204 | 
            +
                    )
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    if self.ip_dim > 0:
         | 
| 207 | 
            +
                        k_ip, v_ip = map(
         | 
| 208 | 
            +
                            lambda t: t.unsqueeze(3)
         | 
| 209 | 
            +
                            .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 210 | 
            +
                            .permute(0, 2, 1, 3)
         | 
| 211 | 
            +
                            .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 212 | 
            +
                            .contiguous(),
         | 
| 213 | 
            +
                            (k_ip, v_ip),
         | 
| 214 | 
            +
                        )
         | 
| 215 | 
            +
                        # actually compute the attention, what we cannot get enough of
         | 
| 216 | 
            +
                        out_ip = xformers.ops.memory_efficient_attention(
         | 
| 217 | 
            +
                            q, k_ip, v_ip, attn_bias=None, op=self.attention_op
         | 
| 218 | 
            +
                        )
         | 
| 219 | 
            +
                        out = out + self.ip_weight * out_ip
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    out = (
         | 
| 222 | 
            +
                        out.unsqueeze(0)
         | 
| 223 | 
            +
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 224 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 225 | 
            +
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 226 | 
            +
                    )
         | 
| 227 | 
            +
                    return self.to_out(out)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
             | 
| 230 | 
            +
            class BasicTransformerBlock3D(nn.Module):
         | 
| 231 | 
            +
                
         | 
| 232 | 
            +
                def __init__(
         | 
| 233 | 
            +
                    self,
         | 
| 234 | 
            +
                    dim,
         | 
| 235 | 
            +
                    n_heads,
         | 
| 236 | 
            +
                    d_head,
         | 
| 237 | 
            +
                    context_dim,
         | 
| 238 | 
            +
                    dropout=0.0,
         | 
| 239 | 
            +
                    gated_ff=True,
         | 
| 240 | 
            +
                    ip_dim=0,
         | 
| 241 | 
            +
                    ip_weight=1,
         | 
| 242 | 
            +
                ):
         | 
| 243 | 
            +
                    super().__init__()
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    self.attn1 = MemoryEfficientCrossAttention(
         | 
| 246 | 
            +
                        query_dim=dim,
         | 
| 247 | 
            +
                        context_dim=None, # self-attention
         | 
| 248 | 
            +
                        heads=n_heads,
         | 
| 249 | 
            +
                        dim_head=d_head,
         | 
| 250 | 
            +
                        dropout=dropout,
         | 
| 251 | 
            +
                    )
         | 
| 252 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 253 | 
            +
                    self.attn2 = MemoryEfficientCrossAttention(
         | 
| 254 | 
            +
                        query_dim=dim,
         | 
| 255 | 
            +
                        context_dim=context_dim,
         | 
| 256 | 
            +
                        heads=n_heads,
         | 
| 257 | 
            +
                        dim_head=d_head,
         | 
| 258 | 
            +
                        dropout=dropout,
         | 
| 259 | 
            +
                        # ip only applies to cross-attention
         | 
| 260 | 
            +
                        ip_dim=ip_dim,
         | 
| 261 | 
            +
                        ip_weight=ip_weight,
         | 
| 262 | 
            +
                    ) 
         | 
| 263 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 264 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 265 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 268 | 
            +
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 269 | 
            +
                    x = self.attn1(self.norm1(x), context=None) + x
         | 
| 270 | 
            +
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 271 | 
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 272 | 
            +
                    x = self.ff(self.norm3(x)) + x
         | 
| 273 | 
            +
                    return x
         | 
| 274 | 
            +
             | 
| 275 | 
            +
             | 
| 276 | 
            +
            class SpatialTransformer3D(nn.Module):
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                def __init__(
         | 
| 279 | 
            +
                    self,
         | 
| 280 | 
            +
                    in_channels,
         | 
| 281 | 
            +
                    n_heads,
         | 
| 282 | 
            +
                    d_head,
         | 
| 283 | 
            +
                    context_dim, # cross attention input dim
         | 
| 284 | 
            +
                    depth=1,
         | 
| 285 | 
            +
                    dropout=0.0,
         | 
| 286 | 
            +
                    ip_dim=0,
         | 
| 287 | 
            +
                    ip_weight=1,
         | 
| 288 | 
            +
                ):
         | 
| 289 | 
            +
                    super().__init__()
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    if not isinstance(context_dim, list):
         | 
| 292 | 
            +
                        context_dim = [context_dim]
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    self.in_channels = in_channels
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    inner_dim = n_heads * d_head
         | 
| 297 | 
            +
                    self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 298 | 
            +
                    self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 301 | 
            +
                        [
         | 
| 302 | 
            +
                            BasicTransformerBlock3D(
         | 
| 303 | 
            +
                                inner_dim,
         | 
| 304 | 
            +
                                n_heads,
         | 
| 305 | 
            +
                                d_head,
         | 
| 306 | 
            +
                                context_dim=context_dim[d],
         | 
| 307 | 
            +
                                dropout=dropout,
         | 
| 308 | 
            +
                                ip_dim=ip_dim,
         | 
| 309 | 
            +
                                ip_weight=ip_weight,
         | 
| 310 | 
            +
                            )
         | 
| 311 | 
            +
                            for d in range(depth)
         | 
| 312 | 
            +
                        ]
         | 
| 313 | 
            +
                    )
         | 
| 314 | 
            +
                    
         | 
| 315 | 
            +
                    self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 316 | 
            +
                    
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 319 | 
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 320 | 
            +
                    if not isinstance(context, list):
         | 
| 321 | 
            +
                        context = [context]
         | 
| 322 | 
            +
                    b, c, h, w = x.shape
         | 
| 323 | 
            +
                    x_in = x
         | 
| 324 | 
            +
                    x = self.norm(x)
         | 
| 325 | 
            +
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 326 | 
            +
                    x = self.proj_in(x)
         | 
| 327 | 
            +
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 328 | 
            +
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 329 | 
            +
                    x = self.proj_out(x)
         | 
| 330 | 
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 331 | 
            +
                    
         | 
| 332 | 
            +
                    return x + x_in
         | 
| 333 | 
            +
             | 
| 334 | 
            +
             | 
| 335 | 
            +
            class PerceiverAttention(nn.Module):
         | 
| 336 | 
            +
                def __init__(self, *, dim, dim_head=64, heads=8):
         | 
| 337 | 
            +
                    super().__init__()
         | 
| 338 | 
            +
                    self.scale = dim_head ** -0.5
         | 
| 339 | 
            +
                    self.dim_head = dim_head
         | 
| 340 | 
            +
                    self.heads = heads
         | 
| 341 | 
            +
                    inner_dim = dim_head * heads
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 344 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 347 | 
            +
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 348 | 
            +
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                def forward(self, x, latents):
         | 
| 351 | 
            +
                    """
         | 
| 352 | 
            +
                    Args:
         | 
| 353 | 
            +
                        x (torch.Tensor): image features
         | 
| 354 | 
            +
                            shape (b, n1, D)
         | 
| 355 | 
            +
                        latent (torch.Tensor): latent features
         | 
| 356 | 
            +
                            shape (b, n2, D)
         | 
| 357 | 
            +
                    """
         | 
| 358 | 
            +
                    x = self.norm1(x)
         | 
| 359 | 
            +
                    latents = self.norm2(latents)
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    b, l, _ = latents.shape
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    q = self.to_q(latents)
         | 
| 364 | 
            +
                    kv_input = torch.cat((x, latents), dim=-2)
         | 
| 365 | 
            +
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    q, k, v = map(
         | 
| 368 | 
            +
                        lambda t: t.reshape(b, t.shape[1], self.heads, -1)
         | 
| 369 | 
            +
                        .transpose(1, 2)
         | 
| 370 | 
            +
                        .reshape(b, self.heads, t.shape[1], -1)
         | 
| 371 | 
            +
                        .contiguous(),
         | 
| 372 | 
            +
                        (q, k, v),
         | 
| 373 | 
            +
                    )
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    # attention
         | 
| 376 | 
            +
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 377 | 
            +
                    weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
         | 
| 378 | 
            +
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 379 | 
            +
                    out = weight @ v
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    return self.to_out(out)
         | 
| 384 | 
            +
             | 
| 385 | 
            +
             | 
| 386 | 
            +
            class Resampler(nn.Module):
         | 
| 387 | 
            +
                def __init__(
         | 
| 388 | 
            +
                    self,
         | 
| 389 | 
            +
                    dim=1024,
         | 
| 390 | 
            +
                    depth=8,
         | 
| 391 | 
            +
                    dim_head=64,
         | 
| 392 | 
            +
                    heads=16,
         | 
| 393 | 
            +
                    num_queries=8,
         | 
| 394 | 
            +
                    embedding_dim=768,
         | 
| 395 | 
            +
                    output_dim=1024,
         | 
| 396 | 
            +
                    ff_mult=4,
         | 
| 397 | 
            +
                ):
         | 
| 398 | 
            +
                    super().__init__()
         | 
| 399 | 
            +
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
         | 
| 400 | 
            +
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
| 401 | 
            +
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 402 | 
            +
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    self.layers = nn.ModuleList([])
         | 
| 405 | 
            +
                    for _ in range(depth):
         | 
| 406 | 
            +
                        self.layers.append(
         | 
| 407 | 
            +
                            nn.ModuleList(
         | 
| 408 | 
            +
                                [
         | 
| 409 | 
            +
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         | 
| 410 | 
            +
                                    nn.Sequential(
         | 
| 411 | 
            +
                                        nn.LayerNorm(dim),
         | 
| 412 | 
            +
                                        nn.Linear(dim, dim * ff_mult, bias=False),
         | 
| 413 | 
            +
                                        nn.GELU(),
         | 
| 414 | 
            +
                                        nn.Linear(dim * ff_mult, dim, bias=False),
         | 
| 415 | 
            +
                                    )
         | 
| 416 | 
            +
                                ]
         | 
| 417 | 
            +
                            )
         | 
| 418 | 
            +
                        )
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                def forward(self, x):
         | 
| 421 | 
            +
                    latents = self.latents.repeat(x.size(0), 1, 1)
         | 
| 422 | 
            +
                    x = self.proj_in(x)
         | 
| 423 | 
            +
                    for attn, ff in self.layers:
         | 
| 424 | 
            +
                        latents = attn(x, latents) + latents
         | 
| 425 | 
            +
                        latents = ff(latents) + latents
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    latents = self.proj_out(latents)
         | 
| 428 | 
            +
                    return self.norm_out(latents)
         | 
| 429 | 
            +
             | 
| 430 | 
            +
             | 
| 431 | 
            +
            class CondSequential(nn.Sequential):
         | 
| 432 | 
            +
                """
         | 
| 433 | 
            +
                A sequential module that passes timestep embeddings to the children that
         | 
| 434 | 
            +
                support it as an extra input.
         | 
| 435 | 
            +
                """
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                def forward(self, x, emb, context=None, num_frames=1):
         | 
| 438 | 
            +
                    for layer in self:
         | 
| 439 | 
            +
                        if isinstance(layer, ResBlock):
         | 
| 440 | 
            +
                            x = layer(x, emb)
         | 
| 441 | 
            +
                        elif isinstance(layer, SpatialTransformer3D):
         | 
| 442 | 
            +
                            x = layer(x, context, num_frames=num_frames)
         | 
| 443 | 
            +
                        else:
         | 
| 444 | 
            +
                            x = layer(x)
         | 
| 445 | 
            +
                    return x
         | 
| 446 | 
            +
             | 
| 447 | 
            +
             | 
| 448 | 
            +
            class Upsample(nn.Module):
         | 
| 449 | 
            +
                """
         | 
| 450 | 
            +
                An upsampling layer with an optional convolution.
         | 
| 451 | 
            +
                :param channels: channels in the inputs and outputs.
         | 
| 452 | 
            +
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 453 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 454 | 
            +
                             upsampling occurs in the inner-two dimensions.
         | 
| 455 | 
            +
                """
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 458 | 
            +
                    super().__init__()
         | 
| 459 | 
            +
                    self.channels = channels
         | 
| 460 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 461 | 
            +
                    self.use_conv = use_conv
         | 
| 462 | 
            +
                    self.dims = dims
         | 
| 463 | 
            +
                    if use_conv:
         | 
| 464 | 
            +
                        self.conv = conv_nd(
         | 
| 465 | 
            +
                            dims, self.channels, self.out_channels, 3, padding=padding
         | 
| 466 | 
            +
                        )
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                def forward(self, x):
         | 
| 469 | 
            +
                    assert x.shape[1] == self.channels
         | 
| 470 | 
            +
                    if self.dims == 3:
         | 
| 471 | 
            +
                        x = F.interpolate(
         | 
| 472 | 
            +
                            x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
         | 
| 473 | 
            +
                        )
         | 
| 474 | 
            +
                    else:
         | 
| 475 | 
            +
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         | 
| 476 | 
            +
                    if self.use_conv:
         | 
| 477 | 
            +
                        x = self.conv(x)
         | 
| 478 | 
            +
                    return x
         | 
| 479 | 
            +
             | 
| 480 | 
            +
             | 
| 481 | 
            +
            class Downsample(nn.Module):
         | 
| 482 | 
            +
                """
         | 
| 483 | 
            +
                A downsampling layer with an optional convolution.
         | 
| 484 | 
            +
                :param channels: channels in the inputs and outputs.
         | 
| 485 | 
            +
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 486 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 487 | 
            +
                             downsampling occurs in the inner-two dimensions.
         | 
| 488 | 
            +
                """
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 491 | 
            +
                    super().__init__()
         | 
| 492 | 
            +
                    self.channels = channels
         | 
| 493 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 494 | 
            +
                    self.use_conv = use_conv
         | 
| 495 | 
            +
                    self.dims = dims
         | 
| 496 | 
            +
                    stride = 2 if dims != 3 else (1, 2, 2)
         | 
| 497 | 
            +
                    if use_conv:
         | 
| 498 | 
            +
                        self.op = conv_nd(
         | 
| 499 | 
            +
                            dims,
         | 
| 500 | 
            +
                            self.channels,
         | 
| 501 | 
            +
                            self.out_channels,
         | 
| 502 | 
            +
                            3,
         | 
| 503 | 
            +
                            stride=stride,
         | 
| 504 | 
            +
                            padding=padding,
         | 
| 505 | 
            +
                        )
         | 
| 506 | 
            +
                    else:
         | 
| 507 | 
            +
                        assert self.channels == self.out_channels
         | 
| 508 | 
            +
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                def forward(self, x):
         | 
| 511 | 
            +
                    assert x.shape[1] == self.channels
         | 
| 512 | 
            +
                    return self.op(x)
         | 
| 513 | 
            +
             | 
| 514 | 
            +
             | 
| 515 | 
            +
            class ResBlock(nn.Module):
         | 
| 516 | 
            +
                """
         | 
| 517 | 
            +
                A residual block that can optionally change the number of channels.
         | 
| 518 | 
            +
                :param channels: the number of input channels.
         | 
| 519 | 
            +
                :param emb_channels: the number of timestep embedding channels.
         | 
| 520 | 
            +
                :param dropout: the rate of dropout.
         | 
| 521 | 
            +
                :param out_channels: if specified, the number of out channels.
         | 
| 522 | 
            +
                :param use_conv: if True and out_channels is specified, use a spatial
         | 
| 523 | 
            +
                    convolution instead of a smaller 1x1 convolution to change the
         | 
| 524 | 
            +
                    channels in the skip connection.
         | 
| 525 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 526 | 
            +
                :param up: if True, use this block for upsampling.
         | 
| 527 | 
            +
                :param down: if True, use this block for downsampling.
         | 
| 528 | 
            +
                """
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                def __init__(
         | 
| 531 | 
            +
                    self,
         | 
| 532 | 
            +
                    channels,
         | 
| 533 | 
            +
                    emb_channels,
         | 
| 534 | 
            +
                    dropout,
         | 
| 535 | 
            +
                    out_channels=None,
         | 
| 536 | 
            +
                    use_conv=False,
         | 
| 537 | 
            +
                    use_scale_shift_norm=False,
         | 
| 538 | 
            +
                    dims=2,
         | 
| 539 | 
            +
                    up=False,
         | 
| 540 | 
            +
                    down=False,
         | 
| 541 | 
            +
                ):
         | 
| 542 | 
            +
                    super().__init__()
         | 
| 543 | 
            +
                    self.channels = channels
         | 
| 544 | 
            +
                    self.emb_channels = emb_channels
         | 
| 545 | 
            +
                    self.dropout = dropout
         | 
| 546 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 547 | 
            +
                    self.use_conv = use_conv
         | 
| 548 | 
            +
                    self.use_scale_shift_norm = use_scale_shift_norm
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    self.in_layers = nn.Sequential(
         | 
| 551 | 
            +
                        nn.GroupNorm(32, channels),
         | 
| 552 | 
            +
                        nn.SiLU(),
         | 
| 553 | 
            +
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         | 
| 554 | 
            +
                    )
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    self.updown = up or down
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    if up:
         | 
| 559 | 
            +
                        self.h_upd = Upsample(channels, False, dims)
         | 
| 560 | 
            +
                        self.x_upd = Upsample(channels, False, dims)
         | 
| 561 | 
            +
                    elif down:
         | 
| 562 | 
            +
                        self.h_upd = Downsample(channels, False, dims)
         | 
| 563 | 
            +
                        self.x_upd = Downsample(channels, False, dims)
         | 
| 564 | 
            +
                    else:
         | 
| 565 | 
            +
                        self.h_upd = self.x_upd = nn.Identity()
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    self.emb_layers = nn.Sequential(
         | 
| 568 | 
            +
                        nn.SiLU(),
         | 
| 569 | 
            +
                        nn.Linear(
         | 
| 570 | 
            +
                            emb_channels,
         | 
| 571 | 
            +
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         | 
| 572 | 
            +
                        ),
         | 
| 573 | 
            +
                    )
         | 
| 574 | 
            +
                    self.out_layers = nn.Sequential(
         | 
| 575 | 
            +
                        nn.GroupNorm(32, self.out_channels),
         | 
| 576 | 
            +
                        nn.SiLU(),
         | 
| 577 | 
            +
                        nn.Dropout(p=dropout),
         | 
| 578 | 
            +
                        zero_module(
         | 
| 579 | 
            +
                            conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
         | 
| 580 | 
            +
                        ),
         | 
| 581 | 
            +
                    )
         | 
| 582 | 
            +
             | 
| 583 | 
            +
                    if self.out_channels == channels:
         | 
| 584 | 
            +
                        self.skip_connection = nn.Identity()
         | 
| 585 | 
            +
                    elif use_conv:
         | 
| 586 | 
            +
                        self.skip_connection = conv_nd(
         | 
| 587 | 
            +
                            dims, channels, self.out_channels, 3, padding=1
         | 
| 588 | 
            +
                        )
         | 
| 589 | 
            +
                    else:
         | 
| 590 | 
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                def forward(self, x, emb):
         | 
| 593 | 
            +
                    if self.updown:
         | 
| 594 | 
            +
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         | 
| 595 | 
            +
                        h = in_rest(x)
         | 
| 596 | 
            +
                        h = self.h_upd(h)
         | 
| 597 | 
            +
                        x = self.x_upd(x)
         | 
| 598 | 
            +
                        h = in_conv(h)
         | 
| 599 | 
            +
                    else:
         | 
| 600 | 
            +
                        h = self.in_layers(x)
         | 
| 601 | 
            +
                    emb_out = self.emb_layers(emb).type(h.dtype)
         | 
| 602 | 
            +
                    while len(emb_out.shape) < len(h.shape):
         | 
| 603 | 
            +
                        emb_out = emb_out[..., None]
         | 
| 604 | 
            +
                    if self.use_scale_shift_norm:
         | 
| 605 | 
            +
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         | 
| 606 | 
            +
                        scale, shift = torch.chunk(emb_out, 2, dim=1)
         | 
| 607 | 
            +
                        h = out_norm(h) * (1 + scale) + shift
         | 
| 608 | 
            +
                        h = out_rest(h)
         | 
| 609 | 
            +
                    else:
         | 
| 610 | 
            +
                        h = h + emb_out
         | 
| 611 | 
            +
                        h = self.out_layers(h)
         | 
| 612 | 
            +
                    return self.skip_connection(x) + h
         | 
| 613 | 
            +
             | 
| 614 | 
            +
             | 
| 615 | 
            +
            class MultiViewUNetModel(ModelMixin, ConfigMixin):
         | 
| 616 | 
            +
                """
         | 
| 617 | 
            +
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| 618 | 
            +
                :param in_channels: channels in the input Tensor.
         | 
| 619 | 
            +
                :param model_channels: base channel count for the model.
         | 
| 620 | 
            +
                :param out_channels: channels in the output Tensor.
         | 
| 621 | 
            +
                :param num_res_blocks: number of residual blocks per downsample.
         | 
| 622 | 
            +
                :param attention_resolutions: a collection of downsample rates at which
         | 
| 623 | 
            +
                    attention will take place. May be a set, list, or tuple.
         | 
| 624 | 
            +
                    For example, if this contains 4, then at 4x downsampling, attention
         | 
| 625 | 
            +
                    will be used.
         | 
| 626 | 
            +
                :param dropout: the dropout probability.
         | 
| 627 | 
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         | 
| 628 | 
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         | 
| 629 | 
            +
                    downsampling.
         | 
| 630 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 631 | 
            +
                :param num_classes: if specified (as an int), then this model will be
         | 
| 632 | 
            +
                    class-conditional with `num_classes` classes.
         | 
| 633 | 
            +
                :param num_heads: the number of attention heads in each attention layer.
         | 
| 634 | 
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         | 
| 635 | 
            +
                                           a fixed channel width per attention head.
         | 
| 636 | 
            +
                :param num_heads_upsample: works with num_heads to set a different number
         | 
| 637 | 
            +
                                           of heads for upsampling. Deprecated.
         | 
| 638 | 
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         | 
| 639 | 
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         | 
| 640 | 
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         | 
| 641 | 
            +
                                                increased efficiency.
         | 
| 642 | 
            +
                :param camera_dim: dimensionality of camera input.
         | 
| 643 | 
            +
                """
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                def __init__(
         | 
| 646 | 
            +
                    self,
         | 
| 647 | 
            +
                    image_size,
         | 
| 648 | 
            +
                    in_channels,
         | 
| 649 | 
            +
                    model_channels,
         | 
| 650 | 
            +
                    out_channels,
         | 
| 651 | 
            +
                    num_res_blocks,
         | 
| 652 | 
            +
                    attention_resolutions,
         | 
| 653 | 
            +
                    dropout=0,
         | 
| 654 | 
            +
                    channel_mult=(1, 2, 4, 8),
         | 
| 655 | 
            +
                    conv_resample=True,
         | 
| 656 | 
            +
                    dims=2,
         | 
| 657 | 
            +
                    num_classes=None,
         | 
| 658 | 
            +
                    num_heads=-1,
         | 
| 659 | 
            +
                    num_head_channels=-1,
         | 
| 660 | 
            +
                    num_heads_upsample=-1,
         | 
| 661 | 
            +
                    use_scale_shift_norm=False,
         | 
| 662 | 
            +
                    resblock_updown=False,
         | 
| 663 | 
            +
                    transformer_depth=1,
         | 
| 664 | 
            +
                    context_dim=None,
         | 
| 665 | 
            +
                    n_embed=None,
         | 
| 666 | 
            +
                    num_attention_blocks=None,
         | 
| 667 | 
            +
                    adm_in_channels=None,
         | 
| 668 | 
            +
                    camera_dim=None,
         | 
| 669 | 
            +
                    ip_dim=0, # imagedream uses ip_dim > 0
         | 
| 670 | 
            +
                    ip_weight=1.0,
         | 
| 671 | 
            +
                    **kwargs,
         | 
| 672 | 
            +
                ):
         | 
| 673 | 
            +
                    super().__init__()
         | 
| 674 | 
            +
                    assert context_dim is not None
         | 
| 675 | 
            +
                    
         | 
| 676 | 
            +
                    if num_heads_upsample == -1:
         | 
| 677 | 
            +
                        num_heads_upsample = num_heads
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                    if num_heads == -1:
         | 
| 680 | 
            +
                        assert (
         | 
| 681 | 
            +
                            num_head_channels != -1
         | 
| 682 | 
            +
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    if num_head_channels == -1:
         | 
| 685 | 
            +
                        assert (
         | 
| 686 | 
            +
                            num_heads != -1
         | 
| 687 | 
            +
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                    self.image_size = image_size
         | 
| 690 | 
            +
                    self.in_channels = in_channels
         | 
| 691 | 
            +
                    self.model_channels = model_channels
         | 
| 692 | 
            +
                    self.out_channels = out_channels
         | 
| 693 | 
            +
                    if isinstance(num_res_blocks, int):
         | 
| 694 | 
            +
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         | 
| 695 | 
            +
                    else:
         | 
| 696 | 
            +
                        if len(num_res_blocks) != len(channel_mult):
         | 
| 697 | 
            +
                            raise ValueError(
         | 
| 698 | 
            +
                                "provide num_res_blocks either as an int (globally constant) or "
         | 
| 699 | 
            +
                                "as a list/tuple (per-level) with the same length as channel_mult"
         | 
| 700 | 
            +
                            )
         | 
| 701 | 
            +
                        self.num_res_blocks = num_res_blocks
         | 
| 702 | 
            +
                    
         | 
| 703 | 
            +
                    if num_attention_blocks is not None:
         | 
| 704 | 
            +
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         | 
| 705 | 
            +
                        assert all(
         | 
| 706 | 
            +
                            map(
         | 
| 707 | 
            +
                                lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
         | 
| 708 | 
            +
                                range(len(num_attention_blocks)),
         | 
| 709 | 
            +
                            )
         | 
| 710 | 
            +
                        )
         | 
| 711 | 
            +
                        print(
         | 
| 712 | 
            +
                            f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
         | 
| 713 | 
            +
                            f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
         | 
| 714 | 
            +
                            f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
         | 
| 715 | 
            +
                            f"attention will still not be set."
         | 
| 716 | 
            +
                        )
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    self.attention_resolutions = attention_resolutions
         | 
| 719 | 
            +
                    self.dropout = dropout
         | 
| 720 | 
            +
                    self.channel_mult = channel_mult
         | 
| 721 | 
            +
                    self.conv_resample = conv_resample
         | 
| 722 | 
            +
                    self.num_classes = num_classes
         | 
| 723 | 
            +
                    self.num_heads = num_heads
         | 
| 724 | 
            +
                    self.num_head_channels = num_head_channels
         | 
| 725 | 
            +
                    self.num_heads_upsample = num_heads_upsample
         | 
| 726 | 
            +
                    self.predict_codebook_ids = n_embed is not None
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                    self.ip_dim = ip_dim
         | 
| 729 | 
            +
                    self.ip_weight = ip_weight
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                    if self.ip_dim > 0:
         | 
| 732 | 
            +
                        self.image_embed = Resampler(
         | 
| 733 | 
            +
                            dim=context_dim,
         | 
| 734 | 
            +
                            depth=4,
         | 
| 735 | 
            +
                            dim_head=64,
         | 
| 736 | 
            +
                            heads=12,
         | 
| 737 | 
            +
                            num_queries=ip_dim,  # num token
         | 
| 738 | 
            +
                            embedding_dim=1280,
         | 
| 739 | 
            +
                            output_dim=context_dim,
         | 
| 740 | 
            +
                            ff_mult=4,
         | 
| 741 | 
            +
                        )
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                    time_embed_dim = model_channels * 4
         | 
| 744 | 
            +
                    self.time_embed = nn.Sequential(
         | 
| 745 | 
            +
                        nn.Linear(model_channels, time_embed_dim),
         | 
| 746 | 
            +
                        nn.SiLU(),
         | 
| 747 | 
            +
                        nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 748 | 
            +
                    )
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                    if camera_dim is not None:
         | 
| 751 | 
            +
                        time_embed_dim = model_channels * 4
         | 
| 752 | 
            +
                        self.camera_embed = nn.Sequential(
         | 
| 753 | 
            +
                            nn.Linear(camera_dim, time_embed_dim),
         | 
| 754 | 
            +
                            nn.SiLU(),
         | 
| 755 | 
            +
                            nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 756 | 
            +
                        )
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                    if self.num_classes is not None:
         | 
| 759 | 
            +
                        if isinstance(self.num_classes, int):
         | 
| 760 | 
            +
                            self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
         | 
| 761 | 
            +
                        elif self.num_classes == "continuous":
         | 
| 762 | 
            +
                            # print("setting up linear c_adm embedding layer")
         | 
| 763 | 
            +
                            self.label_emb = nn.Linear(1, time_embed_dim)
         | 
| 764 | 
            +
                        elif self.num_classes == "sequential":
         | 
| 765 | 
            +
                            assert adm_in_channels is not None
         | 
| 766 | 
            +
                            self.label_emb = nn.Sequential(
         | 
| 767 | 
            +
                                nn.Sequential(
         | 
| 768 | 
            +
                                    nn.Linear(adm_in_channels, time_embed_dim),
         | 
| 769 | 
            +
                                    nn.SiLU(),
         | 
| 770 | 
            +
                                    nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 771 | 
            +
                                )
         | 
| 772 | 
            +
                            )
         | 
| 773 | 
            +
                        else:
         | 
| 774 | 
            +
                            raise ValueError()
         | 
| 775 | 
            +
             | 
| 776 | 
            +
                    self.input_blocks = nn.ModuleList(
         | 
| 777 | 
            +
                        [
         | 
| 778 | 
            +
                            CondSequential(
         | 
| 779 | 
            +
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         | 
| 780 | 
            +
                            )
         | 
| 781 | 
            +
                        ]
         | 
| 782 | 
            +
                    )
         | 
| 783 | 
            +
                    self._feature_size = model_channels
         | 
| 784 | 
            +
                    input_block_chans = [model_channels]
         | 
| 785 | 
            +
                    ch = model_channels
         | 
| 786 | 
            +
                    ds = 1
         | 
| 787 | 
            +
                    for level, mult in enumerate(channel_mult):
         | 
| 788 | 
            +
                        for nr in range(self.num_res_blocks[level]):
         | 
| 789 | 
            +
                            layers: List[Any] = [
         | 
| 790 | 
            +
                                ResBlock(
         | 
| 791 | 
            +
                                    ch,
         | 
| 792 | 
            +
                                    time_embed_dim,
         | 
| 793 | 
            +
                                    dropout,
         | 
| 794 | 
            +
                                    out_channels=mult * model_channels,
         | 
| 795 | 
            +
                                    dims=dims,
         | 
| 796 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 797 | 
            +
                                )
         | 
| 798 | 
            +
                            ]
         | 
| 799 | 
            +
                            ch = mult * model_channels
         | 
| 800 | 
            +
                            if ds in attention_resolutions:
         | 
| 801 | 
            +
                                if num_head_channels == -1:
         | 
| 802 | 
            +
                                    dim_head = ch // num_heads
         | 
| 803 | 
            +
                                else:
         | 
| 804 | 
            +
                                    num_heads = ch // num_head_channels
         | 
| 805 | 
            +
                                    dim_head = num_head_channels
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                                if num_attention_blocks is None or nr < num_attention_blocks[level]:
         | 
| 808 | 
            +
                                    layers.append(
         | 
| 809 | 
            +
                                        SpatialTransformer3D(
         | 
| 810 | 
            +
                                            ch,
         | 
| 811 | 
            +
                                            num_heads,
         | 
| 812 | 
            +
                                            dim_head,
         | 
| 813 | 
            +
                                            context_dim=context_dim,
         | 
| 814 | 
            +
                                            depth=transformer_depth,
         | 
| 815 | 
            +
                                            ip_dim=self.ip_dim,
         | 
| 816 | 
            +
                                            ip_weight=self.ip_weight,
         | 
| 817 | 
            +
                                        )
         | 
| 818 | 
            +
                                    )
         | 
| 819 | 
            +
                            self.input_blocks.append(CondSequential(*layers))
         | 
| 820 | 
            +
                            self._feature_size += ch
         | 
| 821 | 
            +
                            input_block_chans.append(ch)
         | 
| 822 | 
            +
                        if level != len(channel_mult) - 1:
         | 
| 823 | 
            +
                            out_ch = ch
         | 
| 824 | 
            +
                            self.input_blocks.append(
         | 
| 825 | 
            +
                                CondSequential(
         | 
| 826 | 
            +
                                    ResBlock(
         | 
| 827 | 
            +
                                        ch,
         | 
| 828 | 
            +
                                        time_embed_dim,
         | 
| 829 | 
            +
                                        dropout,
         | 
| 830 | 
            +
                                        out_channels=out_ch,
         | 
| 831 | 
            +
                                        dims=dims,
         | 
| 832 | 
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 833 | 
            +
                                        down=True,
         | 
| 834 | 
            +
                                    )
         | 
| 835 | 
            +
                                    if resblock_updown
         | 
| 836 | 
            +
                                    else Downsample(
         | 
| 837 | 
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         | 
| 838 | 
            +
                                    )
         | 
| 839 | 
            +
                                )
         | 
| 840 | 
            +
                            )
         | 
| 841 | 
            +
                            ch = out_ch
         | 
| 842 | 
            +
                            input_block_chans.append(ch)
         | 
| 843 | 
            +
                            ds *= 2
         | 
| 844 | 
            +
                            self._feature_size += ch
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                    if num_head_channels == -1:
         | 
| 847 | 
            +
                        dim_head = ch // num_heads
         | 
| 848 | 
            +
                    else:
         | 
| 849 | 
            +
                        num_heads = ch // num_head_channels
         | 
| 850 | 
            +
                        dim_head = num_head_channels
         | 
| 851 | 
            +
                    
         | 
| 852 | 
            +
                    self.middle_block = CondSequential(
         | 
| 853 | 
            +
                        ResBlock(
         | 
| 854 | 
            +
                            ch,
         | 
| 855 | 
            +
                            time_embed_dim,
         | 
| 856 | 
            +
                            dropout,
         | 
| 857 | 
            +
                            dims=dims,
         | 
| 858 | 
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 859 | 
            +
                        ),
         | 
| 860 | 
            +
                        SpatialTransformer3D(
         | 
| 861 | 
            +
                            ch,
         | 
| 862 | 
            +
                            num_heads,
         | 
| 863 | 
            +
                            dim_head,
         | 
| 864 | 
            +
                            context_dim=context_dim,
         | 
| 865 | 
            +
                            depth=transformer_depth,
         | 
| 866 | 
            +
                            ip_dim=self.ip_dim,
         | 
| 867 | 
            +
                            ip_weight=self.ip_weight,
         | 
| 868 | 
            +
                        ), 
         | 
| 869 | 
            +
                        ResBlock(
         | 
| 870 | 
            +
                            ch,
         | 
| 871 | 
            +
                            time_embed_dim,
         | 
| 872 | 
            +
                            dropout,
         | 
| 873 | 
            +
                            dims=dims,
         | 
| 874 | 
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 875 | 
            +
                        ),
         | 
| 876 | 
            +
                    )
         | 
| 877 | 
            +
                    self._feature_size += ch
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    self.output_blocks = nn.ModuleList([])
         | 
| 880 | 
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         | 
| 881 | 
            +
                        for i in range(self.num_res_blocks[level] + 1):
         | 
| 882 | 
            +
                            ich = input_block_chans.pop()
         | 
| 883 | 
            +
                            layers = [
         | 
| 884 | 
            +
                                ResBlock(
         | 
| 885 | 
            +
                                    ch + ich,
         | 
| 886 | 
            +
                                    time_embed_dim,
         | 
| 887 | 
            +
                                    dropout,
         | 
| 888 | 
            +
                                    out_channels=model_channels * mult,
         | 
| 889 | 
            +
                                    dims=dims,
         | 
| 890 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 891 | 
            +
                                )
         | 
| 892 | 
            +
                            ]
         | 
| 893 | 
            +
                            ch = model_channels * mult
         | 
| 894 | 
            +
                            if ds in attention_resolutions:
         | 
| 895 | 
            +
                                if num_head_channels == -1:
         | 
| 896 | 
            +
                                    dim_head = ch // num_heads
         | 
| 897 | 
            +
                                else:
         | 
| 898 | 
            +
                                    num_heads = ch // num_head_channels
         | 
| 899 | 
            +
                                    dim_head = num_head_channels
         | 
| 900 | 
            +
             | 
| 901 | 
            +
                                if num_attention_blocks is None or i < num_attention_blocks[level]:
         | 
| 902 | 
            +
                                    layers.append(
         | 
| 903 | 
            +
                                        SpatialTransformer3D(
         | 
| 904 | 
            +
                                            ch,
         | 
| 905 | 
            +
                                            num_heads,
         | 
| 906 | 
            +
                                            dim_head,
         | 
| 907 | 
            +
                                            context_dim=context_dim,
         | 
| 908 | 
            +
                                            depth=transformer_depth,
         | 
| 909 | 
            +
                                            ip_dim=self.ip_dim,
         | 
| 910 | 
            +
                                            ip_weight=self.ip_weight,
         | 
| 911 | 
            +
                                        )
         | 
| 912 | 
            +
                                    )
         | 
| 913 | 
            +
                            if level and i == self.num_res_blocks[level]:
         | 
| 914 | 
            +
                                out_ch = ch
         | 
| 915 | 
            +
                                layers.append(
         | 
| 916 | 
            +
                                    ResBlock(
         | 
| 917 | 
            +
                                        ch,
         | 
| 918 | 
            +
                                        time_embed_dim,
         | 
| 919 | 
            +
                                        dropout,
         | 
| 920 | 
            +
                                        out_channels=out_ch,
         | 
| 921 | 
            +
                                        dims=dims,
         | 
| 922 | 
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 923 | 
            +
                                        up=True,
         | 
| 924 | 
            +
                                    )
         | 
| 925 | 
            +
                                    if resblock_updown
         | 
| 926 | 
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         | 
| 927 | 
            +
                                )
         | 
| 928 | 
            +
                                ds //= 2
         | 
| 929 | 
            +
                            self.output_blocks.append(CondSequential(*layers))
         | 
| 930 | 
            +
                            self._feature_size += ch
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    self.out = nn.Sequential(
         | 
| 933 | 
            +
                        nn.GroupNorm(32, ch),
         | 
| 934 | 
            +
                        nn.SiLU(),
         | 
| 935 | 
            +
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         | 
| 936 | 
            +
                    )
         | 
| 937 | 
            +
                    if self.predict_codebook_ids:
         | 
| 938 | 
            +
                        self.id_predictor = nn.Sequential(
         | 
| 939 | 
            +
                            nn.GroupNorm(32, ch),
         | 
| 940 | 
            +
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 941 | 
            +
                            # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 942 | 
            +
                        )
         | 
| 943 | 
            +
             | 
| 944 | 
            +
                def forward(
         | 
| 945 | 
            +
                    self,
         | 
| 946 | 
            +
                    x,
         | 
| 947 | 
            +
                    timesteps=None,
         | 
| 948 | 
            +
                    context=None,
         | 
| 949 | 
            +
                    y=None,
         | 
| 950 | 
            +
                    camera=None,
         | 
| 951 | 
            +
                    num_frames=1,
         | 
| 952 | 
            +
                    ip=None,
         | 
| 953 | 
            +
                    ip_img=None,
         | 
| 954 | 
            +
                    **kwargs,
         | 
| 955 | 
            +
                ):
         | 
| 956 | 
            +
                    """
         | 
| 957 | 
            +
                    Apply the model to an input batch.
         | 
| 958 | 
            +
                    :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
         | 
| 959 | 
            +
                    :param timesteps: a 1-D batch of timesteps.
         | 
| 960 | 
            +
                    :param context: conditioning plugged in via crossattn
         | 
| 961 | 
            +
                    :param y: an [N] Tensor of labels, if class-conditional.
         | 
| 962 | 
            +
                    :param num_frames: a integer indicating number of frames for tensor reshaping.
         | 
| 963 | 
            +
                    :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
         | 
| 964 | 
            +
                    """
         | 
| 965 | 
            +
                    assert (
         | 
| 966 | 
            +
                        x.shape[0] % num_frames == 0
         | 
| 967 | 
            +
                    ), "input batch size must be dividable by num_frames!"
         | 
| 968 | 
            +
                    assert (y is not None) == (
         | 
| 969 | 
            +
                        self.num_classes is not None
         | 
| 970 | 
            +
                    ), "must specify y if and only if the model is class-conditional"
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                    hs = []
         | 
| 973 | 
            +
             | 
| 974 | 
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
         | 
| 975 | 
            +
             | 
| 976 | 
            +
                    emb = self.time_embed(t_emb)
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                    if self.num_classes is not None:
         | 
| 979 | 
            +
                        assert y is not None
         | 
| 980 | 
            +
                        assert y.shape[0] == x.shape[0]
         | 
| 981 | 
            +
                        emb = emb + self.label_emb(y)
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    # Add camera embeddings
         | 
| 984 | 
            +
                    if camera is not None:
         | 
| 985 | 
            +
                        emb = emb + self.camera_embed(camera)
         | 
| 986 | 
            +
                    
         | 
| 987 | 
            +
                    # imagedream variant
         | 
| 988 | 
            +
                    if self.ip_dim > 0:
         | 
| 989 | 
            +
                        x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
         | 
| 990 | 
            +
                        ip_emb = self.image_embed(ip)
         | 
| 991 | 
            +
                        context = torch.cat((context, ip_emb), 1)
         | 
| 992 | 
            +
             | 
| 993 | 
            +
                    h = x
         | 
| 994 | 
            +
                    for module in self.input_blocks:
         | 
| 995 | 
            +
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 996 | 
            +
                        hs.append(h)
         | 
| 997 | 
            +
                    h = self.middle_block(h, emb, context, num_frames=num_frames)
         | 
| 998 | 
            +
                    for module in self.output_blocks:
         | 
| 999 | 
            +
                        h = torch.cat([h, hs.pop()], dim=1)
         | 
| 1000 | 
            +
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 1001 | 
            +
                    h = h.type(x.dtype)
         | 
| 1002 | 
            +
                    if self.predict_codebook_ids:
         | 
| 1003 | 
            +
                        return self.id_predictor(h)
         | 
| 1004 | 
            +
                    else:
         | 
| 1005 | 
            +
                        return self.out(h)
         | 
    	
        mvdream/pipeline_mvdream.py
    ADDED
    
    | @@ -0,0 +1,559 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn.functional as F
         | 
| 3 | 
            +
            import inspect
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            from typing import Callable, List, Optional, Union
         | 
| 6 | 
            +
            from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
         | 
| 7 | 
            +
            from diffusers import AutoencoderKL, DiffusionPipeline
         | 
| 8 | 
            +
            from diffusers.utils import (
         | 
| 9 | 
            +
                deprecate,
         | 
| 10 | 
            +
                is_accelerate_available,
         | 
| 11 | 
            +
                is_accelerate_version,
         | 
| 12 | 
            +
                logging,
         | 
| 13 | 
            +
            )
         | 
| 14 | 
            +
            from diffusers.configuration_utils import FrozenDict
         | 
| 15 | 
            +
            from diffusers.schedulers import DDIMScheduler
         | 
| 16 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from mvdream.mv_unet import MultiViewUNetModel, get_camera
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            class MVDreamPipeline(DiffusionPipeline):
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                _optional_components = ["feature_extractor", "image_encoder"]
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def __init__(
         | 
| 28 | 
            +
                    self,
         | 
| 29 | 
            +
                    vae: AutoencoderKL,
         | 
| 30 | 
            +
                    unet: MultiViewUNetModel,
         | 
| 31 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 32 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 33 | 
            +
                    scheduler: DDIMScheduler,
         | 
| 34 | 
            +
                    # imagedream variant
         | 
| 35 | 
            +
                    feature_extractor: CLIPImageProcessor,
         | 
| 36 | 
            +
                    image_encoder: CLIPVisionModel,
         | 
| 37 | 
            +
                    requires_safety_checker: bool = False,
         | 
| 38 | 
            +
                ):
         | 
| 39 | 
            +
                    super().__init__()
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                    if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:  # type: ignore
         | 
| 42 | 
            +
                        deprecation_message = (
         | 
| 43 | 
            +
                            f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
         | 
| 44 | 
            +
                            f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "  # type: ignore
         | 
| 45 | 
            +
                            "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
         | 
| 46 | 
            +
                            " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
         | 
| 47 | 
            +
                            " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
         | 
| 48 | 
            +
                            " file"
         | 
| 49 | 
            +
                        )
         | 
| 50 | 
            +
                        deprecate(
         | 
| 51 | 
            +
                            "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
         | 
| 52 | 
            +
                        )
         | 
| 53 | 
            +
                        new_config = dict(scheduler.config)
         | 
| 54 | 
            +
                        new_config["steps_offset"] = 1
         | 
| 55 | 
            +
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:  # type: ignore
         | 
| 58 | 
            +
                        deprecation_message = (
         | 
| 59 | 
            +
                            f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
         | 
| 60 | 
            +
                            " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
         | 
| 61 | 
            +
                            " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
         | 
| 62 | 
            +
                            " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
         | 
| 63 | 
            +
                            " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
         | 
| 64 | 
            +
                        )
         | 
| 65 | 
            +
                        deprecate(
         | 
| 66 | 
            +
                            "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
         | 
| 67 | 
            +
                        )
         | 
| 68 | 
            +
                        new_config = dict(scheduler.config)
         | 
| 69 | 
            +
                        new_config["clip_sample"] = False
         | 
| 70 | 
            +
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    self.register_modules(
         | 
| 73 | 
            +
                        vae=vae,
         | 
| 74 | 
            +
                        unet=unet,
         | 
| 75 | 
            +
                        scheduler=scheduler,
         | 
| 76 | 
            +
                        tokenizer=tokenizer,
         | 
| 77 | 
            +
                        text_encoder=text_encoder,
         | 
| 78 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 79 | 
            +
                        image_encoder=image_encoder,
         | 
| 80 | 
            +
                    )
         | 
| 81 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 82 | 
            +
                    self.register_to_config(requires_safety_checker=requires_safety_checker)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                def enable_vae_slicing(self):
         | 
| 85 | 
            +
                    r"""
         | 
| 86 | 
            +
                    Enable sliced VAE decoding.
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
         | 
| 89 | 
            +
                    steps. This is useful to save some memory and allow larger batch sizes.
         | 
| 90 | 
            +
                    """
         | 
| 91 | 
            +
                    self.vae.enable_slicing()
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def disable_vae_slicing(self):
         | 
| 94 | 
            +
                    r"""
         | 
| 95 | 
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
         | 
| 96 | 
            +
                    computing decoding in one step.
         | 
| 97 | 
            +
                    """
         | 
| 98 | 
            +
                    self.vae.disable_slicing()
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def enable_vae_tiling(self):
         | 
| 101 | 
            +
                    r"""
         | 
| 102 | 
            +
                    Enable tiled VAE decoding.
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
         | 
| 105 | 
            +
                    several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
         | 
| 106 | 
            +
                    """
         | 
| 107 | 
            +
                    self.vae.enable_tiling()
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def disable_vae_tiling(self):
         | 
| 110 | 
            +
                    r"""
         | 
| 111 | 
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
         | 
| 112 | 
            +
                    computing decoding in one step.
         | 
| 113 | 
            +
                    """
         | 
| 114 | 
            +
                    self.vae.disable_tiling()
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def enable_sequential_cpu_offload(self, gpu_id=0):
         | 
| 117 | 
            +
                    r"""
         | 
| 118 | 
            +
                    Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
         | 
| 119 | 
            +
                    text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
         | 
| 120 | 
            +
                    `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
         | 
| 121 | 
            +
                    Note that offloading happens on a submodule basis. Memory savings are higher than with
         | 
| 122 | 
            +
                    `enable_model_cpu_offload`, but performance is lower.
         | 
| 123 | 
            +
                    """
         | 
| 124 | 
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
         | 
| 125 | 
            +
                        from accelerate import cpu_offload
         | 
| 126 | 
            +
                    else:
         | 
| 127 | 
            +
                        raise ImportError(
         | 
| 128 | 
            +
                            "`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
         | 
| 129 | 
            +
                        )
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    if self.device.type != "cpu":
         | 
| 134 | 
            +
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 135 | 
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
         | 
| 138 | 
            +
                        cpu_offload(cpu_offloaded_model, device)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                def enable_model_cpu_offload(self, gpu_id=0):
         | 
| 141 | 
            +
                    r"""
         | 
| 142 | 
            +
                    Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
         | 
| 143 | 
            +
                    to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
         | 
| 144 | 
            +
                    method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
         | 
| 145 | 
            +
                    `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
         | 
| 146 | 
            +
                    """
         | 
| 147 | 
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
         | 
| 148 | 
            +
                        from accelerate import cpu_offload_with_hook
         | 
| 149 | 
            +
                    else:
         | 
| 150 | 
            +
                        raise ImportError(
         | 
| 151 | 
            +
                            "`enable_model_offload` requires `accelerate v0.17.0` or higher."
         | 
| 152 | 
            +
                        )
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    device = torch.device(f"cuda:{gpu_id}")
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    if self.device.type != "cpu":
         | 
| 157 | 
            +
                        self.to("cpu", silence_dtype_warnings=True)
         | 
| 158 | 
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    hook = None
         | 
| 161 | 
            +
                    for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
         | 
| 162 | 
            +
                        _, hook = cpu_offload_with_hook(
         | 
| 163 | 
            +
                            cpu_offloaded_model, device, prev_module_hook=hook
         | 
| 164 | 
            +
                        )
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    # We'll offload the last model manually.
         | 
| 167 | 
            +
                    self.final_offload_hook = hook
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                @property
         | 
| 170 | 
            +
                def _execution_device(self):
         | 
| 171 | 
            +
                    r"""
         | 
| 172 | 
            +
                    Returns the device on which the pipeline's models will be executed. After calling
         | 
| 173 | 
            +
                    `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
         | 
| 174 | 
            +
                    hooks.
         | 
| 175 | 
            +
                    """
         | 
| 176 | 
            +
                    if not hasattr(self.unet, "_hf_hook"):
         | 
| 177 | 
            +
                        return self.device
         | 
| 178 | 
            +
                    for module in self.unet.modules():
         | 
| 179 | 
            +
                        if (
         | 
| 180 | 
            +
                            hasattr(module, "_hf_hook")
         | 
| 181 | 
            +
                            and hasattr(module._hf_hook, "execution_device")
         | 
| 182 | 
            +
                            and module._hf_hook.execution_device is not None
         | 
| 183 | 
            +
                        ):
         | 
| 184 | 
            +
                            return torch.device(module._hf_hook.execution_device)
         | 
| 185 | 
            +
                    return self.device
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def _encode_prompt(
         | 
| 188 | 
            +
                    self,
         | 
| 189 | 
            +
                    prompt,
         | 
| 190 | 
            +
                    device,
         | 
| 191 | 
            +
                    num_images_per_prompt,
         | 
| 192 | 
            +
                    do_classifier_free_guidance: bool,
         | 
| 193 | 
            +
                    negative_prompt=None,
         | 
| 194 | 
            +
                ):
         | 
| 195 | 
            +
                    r"""
         | 
| 196 | 
            +
                    Encodes the prompt into text encoder hidden states.
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    Args:
         | 
| 199 | 
            +
                         prompt (`str` or `List[str]`, *optional*):
         | 
| 200 | 
            +
                            prompt to be encoded
         | 
| 201 | 
            +
                        device: (`torch.device`):
         | 
| 202 | 
            +
                            torch device
         | 
| 203 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 204 | 
            +
                            number of images that should be generated per prompt
         | 
| 205 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 206 | 
            +
                            whether to use classifier free guidance or not
         | 
| 207 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 208 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 209 | 
            +
                            `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
         | 
| 210 | 
            +
                            Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
         | 
| 211 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 212 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 213 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 214 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 215 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 216 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 217 | 
            +
                            argument.
         | 
| 218 | 
            +
                    """
         | 
| 219 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 220 | 
            +
                        batch_size = 1
         | 
| 221 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 222 | 
            +
                        batch_size = len(prompt)
         | 
| 223 | 
            +
                    else:
         | 
| 224 | 
            +
                        raise ValueError(
         | 
| 225 | 
            +
                            f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
         | 
| 226 | 
            +
                        )
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    text_inputs = self.tokenizer(
         | 
| 229 | 
            +
                        prompt,
         | 
| 230 | 
            +
                        padding="max_length",
         | 
| 231 | 
            +
                        max_length=self.tokenizer.model_max_length,
         | 
| 232 | 
            +
                        truncation=True,
         | 
| 233 | 
            +
                        return_tensors="pt",
         | 
| 234 | 
            +
                    )
         | 
| 235 | 
            +
                    text_input_ids = text_inputs.input_ids
         | 
| 236 | 
            +
                    untruncated_ids = self.tokenizer(
         | 
| 237 | 
            +
                        prompt, padding="longest", return_tensors="pt"
         | 
| 238 | 
            +
                    ).input_ids
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         | 
| 241 | 
            +
                        text_input_ids, untruncated_ids
         | 
| 242 | 
            +
                    ):
         | 
| 243 | 
            +
                        removed_text = self.tokenizer.batch_decode(
         | 
| 244 | 
            +
                            untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
         | 
| 245 | 
            +
                        )
         | 
| 246 | 
            +
                        logger.warning(
         | 
| 247 | 
            +
                            "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 248 | 
            +
                            f" {self.tokenizer.model_max_length} tokens: {removed_text}"
         | 
| 249 | 
            +
                        )
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    if (
         | 
| 252 | 
            +
                        hasattr(self.text_encoder.config, "use_attention_mask")
         | 
| 253 | 
            +
                        and self.text_encoder.config.use_attention_mask
         | 
| 254 | 
            +
                    ):
         | 
| 255 | 
            +
                        attention_mask = text_inputs.attention_mask.to(device)
         | 
| 256 | 
            +
                    else:
         | 
| 257 | 
            +
                        attention_mask = None
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    prompt_embeds = self.text_encoder(
         | 
| 260 | 
            +
                        text_input_ids.to(device),
         | 
| 261 | 
            +
                        attention_mask=attention_mask,
         | 
| 262 | 
            +
                    )
         | 
| 263 | 
            +
                    prompt_embeds = prompt_embeds[0]
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 268 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 269 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 270 | 
            +
                    prompt_embeds = prompt_embeds.view(
         | 
| 271 | 
            +
                        bs_embed * num_images_per_prompt, seq_len, -1
         | 
| 272 | 
            +
                    )
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    # get unconditional embeddings for classifier free guidance
         | 
| 275 | 
            +
                    if do_classifier_free_guidance:
         | 
| 276 | 
            +
                        uncond_tokens: List[str]
         | 
| 277 | 
            +
                        if negative_prompt is None:
         | 
| 278 | 
            +
                            uncond_tokens = [""] * batch_size
         | 
| 279 | 
            +
                        elif type(prompt) is not type(negative_prompt):
         | 
| 280 | 
            +
                            raise TypeError(
         | 
| 281 | 
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 282 | 
            +
                                f" {type(prompt)}."
         | 
| 283 | 
            +
                            )
         | 
| 284 | 
            +
                        elif isinstance(negative_prompt, str):
         | 
| 285 | 
            +
                            uncond_tokens = [negative_prompt]
         | 
| 286 | 
            +
                        elif batch_size != len(negative_prompt):
         | 
| 287 | 
            +
                            raise ValueError(
         | 
| 288 | 
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 289 | 
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 290 | 
            +
                                " the batch size of `prompt`."
         | 
| 291 | 
            +
                            )
         | 
| 292 | 
            +
                        else:
         | 
| 293 | 
            +
                            uncond_tokens = negative_prompt
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                        max_length = prompt_embeds.shape[1]
         | 
| 296 | 
            +
                        uncond_input = self.tokenizer(
         | 
| 297 | 
            +
                            uncond_tokens,
         | 
| 298 | 
            +
                            padding="max_length",
         | 
| 299 | 
            +
                            max_length=max_length,
         | 
| 300 | 
            +
                            truncation=True,
         | 
| 301 | 
            +
                            return_tensors="pt",
         | 
| 302 | 
            +
                        )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                        if (
         | 
| 305 | 
            +
                            hasattr(self.text_encoder.config, "use_attention_mask")
         | 
| 306 | 
            +
                            and self.text_encoder.config.use_attention_mask
         | 
| 307 | 
            +
                        ):
         | 
| 308 | 
            +
                            attention_mask = uncond_input.attention_mask.to(device)
         | 
| 309 | 
            +
                        else:
         | 
| 310 | 
            +
                            attention_mask = None
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                        negative_prompt_embeds = self.text_encoder(
         | 
| 313 | 
            +
                            uncond_input.input_ids.to(device),
         | 
| 314 | 
            +
                            attention_mask=attention_mask,
         | 
| 315 | 
            +
                        )
         | 
| 316 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds[0]
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 319 | 
            +
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.to(
         | 
| 322 | 
            +
                            dtype=self.text_encoder.dtype, device=device
         | 
| 323 | 
            +
                        )
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(
         | 
| 326 | 
            +
                            1, num_images_per_prompt, 1
         | 
| 327 | 
            +
                        )
         | 
| 328 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(
         | 
| 329 | 
            +
                            batch_size * num_images_per_prompt, seq_len, -1
         | 
| 330 | 
            +
                        )
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                        # For classifier free guidance, we need to do two forward passes.
         | 
| 333 | 
            +
                        # Here we concatenate the unconditional and text embeddings into a single batch
         | 
| 334 | 
            +
                        # to avoid doing two forward passes
         | 
| 335 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    return prompt_embeds
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                def decode_latents(self, latents):
         | 
| 340 | 
            +
                    latents = 1 / self.vae.config.scaling_factor * latents
         | 
| 341 | 
            +
                    image = self.vae.decode(latents).sample
         | 
| 342 | 
            +
                    image = (image / 2 + 0.5).clamp(0, 1)
         | 
| 343 | 
            +
                    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
         | 
| 344 | 
            +
                    image = image.cpu().permute(0, 2, 3, 1).float().numpy()
         | 
| 345 | 
            +
                    return image
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 348 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 349 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 350 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 351 | 
            +
                    # and should be between [0, 1]
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    accepts_eta = "eta" in set(
         | 
| 354 | 
            +
                        inspect.signature(self.scheduler.step).parameters.keys()
         | 
| 355 | 
            +
                    )
         | 
| 356 | 
            +
                    extra_step_kwargs = {}
         | 
| 357 | 
            +
                    if accepts_eta:
         | 
| 358 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    # check if the scheduler accepts generator
         | 
| 361 | 
            +
                    accepts_generator = "generator" in set(
         | 
| 362 | 
            +
                        inspect.signature(self.scheduler.step).parameters.keys()
         | 
| 363 | 
            +
                    )
         | 
| 364 | 
            +
                    if accepts_generator:
         | 
| 365 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 366 | 
            +
                    return extra_step_kwargs
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                def prepare_latents(
         | 
| 369 | 
            +
                    self,
         | 
| 370 | 
            +
                    batch_size,
         | 
| 371 | 
            +
                    num_channels_latents,
         | 
| 372 | 
            +
                    height,
         | 
| 373 | 
            +
                    width,
         | 
| 374 | 
            +
                    dtype,
         | 
| 375 | 
            +
                    device,
         | 
| 376 | 
            +
                    generator,
         | 
| 377 | 
            +
                    latents=None,
         | 
| 378 | 
            +
                ):
         | 
| 379 | 
            +
                    shape = (
         | 
| 380 | 
            +
                        batch_size,
         | 
| 381 | 
            +
                        num_channels_latents,
         | 
| 382 | 
            +
                        height // self.vae_scale_factor,
         | 
| 383 | 
            +
                        width // self.vae_scale_factor,
         | 
| 384 | 
            +
                    )
         | 
| 385 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 386 | 
            +
                        raise ValueError(
         | 
| 387 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 388 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 389 | 
            +
                        )
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    if latents is None:
         | 
| 392 | 
            +
                        latents = randn_tensor(
         | 
| 393 | 
            +
                            shape, generator=generator, device=device, dtype=dtype
         | 
| 394 | 
            +
                        )
         | 
| 395 | 
            +
                    else:
         | 
| 396 | 
            +
                        latents = latents.to(device)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 399 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 400 | 
            +
                    return latents
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                def encode_image(self, image, device, num_images_per_prompt):
         | 
| 403 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    if image.dtype == np.float32:
         | 
| 406 | 
            +
                        image = (image * 255).astype(np.uint8)
         | 
| 407 | 
            +
                        
         | 
| 408 | 
            +
                    image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 409 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 410 | 
            +
                    
         | 
| 411 | 
            +
                    image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
         | 
| 412 | 
            +
                    image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    return torch.zeros_like(image_embeds), image_embeds
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                def encode_image_latents(self, image, device, num_images_per_prompt):
         | 
| 417 | 
            +
                    
         | 
| 418 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                    image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
         | 
| 421 | 
            +
                    image = 2 * image - 1
         | 
| 422 | 
            +
                    image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
         | 
| 423 | 
            +
                    image = image.to(dtype=dtype)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    posterior = self.vae.encode(image).latent_dist
         | 
| 426 | 
            +
                    latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
         | 
| 427 | 
            +
                    latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    return torch.zeros_like(latents), latents
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                @torch.no_grad()
         | 
| 432 | 
            +
                def __call__(
         | 
| 433 | 
            +
                    self,
         | 
| 434 | 
            +
                    prompt: str = "",
         | 
| 435 | 
            +
                    image: Optional[np.ndarray] = None,
         | 
| 436 | 
            +
                    height: int = 256,
         | 
| 437 | 
            +
                    width: int = 256,
         | 
| 438 | 
            +
                    elevation: float = 0,
         | 
| 439 | 
            +
                    num_inference_steps: int = 50,
         | 
| 440 | 
            +
                    guidance_scale: float = 7.0,
         | 
| 441 | 
            +
                    negative_prompt: str = "",
         | 
| 442 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 443 | 
            +
                    eta: float = 0.0,
         | 
| 444 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 445 | 
            +
                    output_type: Optional[str] = "numpy", # pil, numpy, latents
         | 
| 446 | 
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 447 | 
            +
                    callback_steps: int = 1,
         | 
| 448 | 
            +
                    num_frames: int = 4,
         | 
| 449 | 
            +
                    device=torch.device("cuda:0"),
         | 
| 450 | 
            +
                ):
         | 
| 451 | 
            +
                    self.unet = self.unet.to(device=device)
         | 
| 452 | 
            +
                    self.vae = self.vae.to(device=device)
         | 
| 453 | 
            +
                    self.text_encoder = self.text_encoder.to(device=device)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 456 | 
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 457 | 
            +
                    # corresponds to doing no classifier free guidance.
         | 
| 458 | 
            +
                    do_classifier_free_guidance = guidance_scale > 1.0
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                    # Prepare timesteps
         | 
| 461 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 462 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    # imagedream variant
         | 
| 465 | 
            +
                    if image is not None:
         | 
| 466 | 
            +
                        assert isinstance(image, np.ndarray) and image.dtype == np.float32
         | 
| 467 | 
            +
                        self.image_encoder = self.image_encoder.to(device=device)
         | 
| 468 | 
            +
                        image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
         | 
| 469 | 
            +
                        image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
         | 
| 470 | 
            +
                        
         | 
| 471 | 
            +
                    _prompt_embeds = self._encode_prompt(
         | 
| 472 | 
            +
                        prompt=prompt,
         | 
| 473 | 
            +
                        device=device,
         | 
| 474 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 475 | 
            +
                        do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 476 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 477 | 
            +
                    )  # type: ignore
         | 
| 478 | 
            +
                    prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # Prepare latent variables
         | 
| 481 | 
            +
                    actual_num_frames = num_frames if image is None else num_frames + 1
         | 
| 482 | 
            +
                    latents: torch.Tensor = self.prepare_latents(
         | 
| 483 | 
            +
                        actual_num_frames * num_images_per_prompt,
         | 
| 484 | 
            +
                        4,
         | 
| 485 | 
            +
                        height,
         | 
| 486 | 
            +
                        width,
         | 
| 487 | 
            +
                        prompt_embeds_pos.dtype,
         | 
| 488 | 
            +
                        device,
         | 
| 489 | 
            +
                        generator,
         | 
| 490 | 
            +
                        None,
         | 
| 491 | 
            +
                    )
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                    if image is not None:
         | 
| 494 | 
            +
                        camera = get_camera(num_frames, elevation=elevation, extra_view=True).to(dtype=latents.dtype, device=device)
         | 
| 495 | 
            +
                    else:
         | 
| 496 | 
            +
                        camera = get_camera(num_frames, elevation=elevation, extra_view=False).to(dtype=latents.dtype, device=device)
         | 
| 497 | 
            +
                    camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    # Prepare extra step kwargs.
         | 
| 500 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                    # Denoising loop
         | 
| 503 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 504 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 505 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 506 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 507 | 
            +
                            multiplier = 2 if do_classifier_free_guidance else 1
         | 
| 508 | 
            +
                            latent_model_input = torch.cat([latents] * multiplier)
         | 
| 509 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                            unet_inputs = {
         | 
| 512 | 
            +
                                'x': latent_model_input,
         | 
| 513 | 
            +
                                'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
         | 
| 514 | 
            +
                                'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
         | 
| 515 | 
            +
                                'num_frames': actual_num_frames,
         | 
| 516 | 
            +
                                'camera': torch.cat([camera] * multiplier),
         | 
| 517 | 
            +
                            }
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                            if image is not None:
         | 
| 520 | 
            +
                                unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
         | 
| 521 | 
            +
                                unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
         | 
| 522 | 
            +
                            
         | 
| 523 | 
            +
                            # predict the noise residual
         | 
| 524 | 
            +
                            noise_pred = self.unet.forward(**unet_inputs)
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                            # perform guidance
         | 
| 527 | 
            +
                            if do_classifier_free_guidance:
         | 
| 528 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 529 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (
         | 
| 530 | 
            +
                                    noise_pred_text - noise_pred_uncond
         | 
| 531 | 
            +
                                )
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 534 | 
            +
                            latents: torch.Tensor = self.scheduler.step(
         | 
| 535 | 
            +
                                noise_pred, t, latents, **extra_step_kwargs, return_dict=False
         | 
| 536 | 
            +
                            )[0]
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                            # call the callback, if provided
         | 
| 539 | 
            +
                            if i == len(timesteps) - 1 or (
         | 
| 540 | 
            +
                                (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
         | 
| 541 | 
            +
                            ):
         | 
| 542 | 
            +
                                progress_bar.update()
         | 
| 543 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 544 | 
            +
                                    callback(i, t, latents)  # type: ignore
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    # Post-processing
         | 
| 547 | 
            +
                    if output_type == "latent":
         | 
| 548 | 
            +
                        image = latents
         | 
| 549 | 
            +
                    elif output_type == "pil":
         | 
| 550 | 
            +
                        image = self.decode_latents(latents)
         | 
| 551 | 
            +
                        image = self.numpy_to_pil(image)
         | 
| 552 | 
            +
                    else: # numpy
         | 
| 553 | 
            +
                        image = self.decode_latents(latents)
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                    # Offload last model to CPU
         | 
| 556 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 557 | 
            +
                        self.final_offload_hook.offload()
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    return image
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            --extra-index-url https://download.pytorch.org/whl/cu118
         | 
| 2 | 
            +
            torch
         | 
| 3 | 
            +
            --extra-index-url https://download.pytorch.org/whl/cu118
         | 
| 4 | 
            +
            xformers
         | 
| 5 | 
            +
            numpy
         | 
| 6 | 
            +
            tyro
         | 
| 7 | 
            +
            diffusers
         | 
| 8 | 
            +
            dearpygui
         | 
| 9 | 
            +
            einops
         | 
| 10 | 
            +
            accelerate
         | 
| 11 | 
            +
            gradio
         | 
| 12 | 
            +
            imageio
         | 
| 13 | 
            +
            imageio-ffmpeg
         | 
| 14 | 
            +
            lpips
         | 
| 15 | 
            +
            matplotlib
         | 
| 16 | 
            +
            packaging
         | 
| 17 | 
            +
            Pillow
         | 
| 18 | 
            +
            pygltflib
         | 
| 19 | 
            +
            rembg[gpu,cli]
         | 
| 20 | 
            +
            rich
         | 
| 21 | 
            +
            safetensors
         | 
| 22 | 
            +
            scikit-image
         | 
| 23 | 
            +
            scikit-learn
         | 
| 24 | 
            +
            scipy
         | 
| 25 | 
            +
            tqdm
         | 
| 26 | 
            +
            transformers
         | 
| 27 | 
            +
            trimesh
         | 
| 28 | 
            +
            kiui >= 0.2.3
         | 
| 29 | 
            +
            xatlas
         | 
| 30 | 
            +
            roma
         | 
 
			

