Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
-
from diffusers import CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
|
5 |
from diffusers.utils import export_to_video, load_image
|
6 |
from datetime import datetime
|
7 |
|
@@ -22,13 +22,20 @@ hf_hub_download(
|
|
22 |
local_dir="checkpoints"
|
23 |
)
|
24 |
|
25 |
-
pipe =
|
26 |
-
|
|
|
|
|
|
|
27 |
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
28 |
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
29 |
),
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
33 |
lora_path = "checkpoints/"
|
34 |
if orbit_type == "Left":
|
@@ -45,7 +52,7 @@ def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True))
|
|
45 |
image = load_image(image_path)
|
46 |
seed = random.randint(0, 2**8 - 1)
|
47 |
|
48 |
-
video =
|
49 |
image,
|
50 |
prompt,
|
51 |
num_inference_steps=50, # NOT Changed
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
+
from diffusers import CogVideoXPipeline, CogVideoXDPMScheduler, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
|
5 |
from diffusers.utils import export_to_video, load_image
|
6 |
from datetime import datetime
|
7 |
|
|
|
22 |
local_dir="checkpoints"
|
23 |
)
|
24 |
|
25 |
+
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to(device)
|
26 |
+
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
27 |
+
|
28 |
+
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
29 |
+
"THUDM/CogVideoX-5b-I2V",
|
30 |
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
31 |
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
32 |
),
|
33 |
+
vae=pipe.vae,
|
34 |
+
scheduler=pipe.scheduler,
|
35 |
+
tokenizer=pipe.tokenizer,
|
36 |
+
text_encoder=pipe.text_encoder,
|
37 |
+
torch_dtype=torch.bfloat16,
|
38 |
+
)
|
39 |
def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
40 |
lora_path = "checkpoints/"
|
41 |
if orbit_type == "Left":
|
|
|
52 |
image = load_image(image_path)
|
53 |
seed = random.randint(0, 2**8 - 1)
|
54 |
|
55 |
+
video = pipe_image(
|
56 |
image,
|
57 |
prompt,
|
58 |
num_inference_steps=50, # NOT Changed
|