import gradio as gr import torch from transformers import AutoProcessor, BarkModel import scipy # device = "cuda" if torch.cuda.is_available() else "cpu" # model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device) # model.enable_cpu_offload() device = "cpu" processor = AutoProcessor.from_pretrained("suno/bark-small") model = BarkModel.from_pretrained("suno/bark-small").to(device) num_list = ["1","2","3","4","5","6","7","8","9","10"] lang_list = ["en","de"] def run_bark(text, n, lang): #history_prompt = [] semantic_prompt=f"v2/{lang}_speaker_{int(n-1)}" #text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."], inputs = processor(text=text, voice_preset = semantic_prompt, return_tensors="pt", ) speech_values = model.generate(**inputs, do_sample=True) sampling_rate = model.generation_config.sample_rate #sampling_rate = model.config.sample_rate #sampling_rate = 24000 scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze()) return ("bark_out.wav") with gr.Blocks() as app: with gr.Column(): in_text = gr.Textbox() with gr.Row(): speaker_num = gr.Dropdown(label="Speaker Voice", choices=num_list,value="1") speaker_lang = gr.Dropdown(label="Speaker Language", choices=lang_list,value="en") #speaker_num = gr.Number(value=0) go_btn = gr.Button() with gr.Column(): out_audio = gr.Audio() go_btn.click(run_bark,[in_text, speaker_num, speaker_lang],out_audio) app.launch()