Spaces:
Sleeping
Sleeping
| # Import from 3rd party libraries | |
| import streamlit as st | |
| import streamlit.components.v1 as components | |
| # import streamlit_analytics | |
| import pandas as pd | |
| import numpy as np | |
| import re | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import string | |
| import nltk | |
| from nltk.corpus import stopwords | |
| from nltk.stem import WordNetLemmatizer | |
| nltk.download("stopwords") | |
| nltk.download('wordnet') | |
| from sentence_transformers import SentenceTransformer | |
| import plotly.express as px | |
| import pandas as pd | |
| from sklearn.decomposition import PCA | |
| import time | |
| st.set_page_config(page_title="Mental disorder by description", page_icon="π€") | |
| def convert_string_to_numpy_array(s): | |
| '''Function to convert a string to a NumPy array''' | |
| numbers_list = re.findall(r'-?\d+\.\d+', s) | |
| return np.array(numbers_list, dtype=np.float64) | |
| #load the model | |
| def get_models(): | |
| st.write('*Loading the model...*') | |
| name = "stsb-bert-large" | |
| model = SentenceTransformer(name) | |
| st.write("*The app is loaded and ready to use! :tada:*") | |
| lemmatizer = WordNetLemmatizer() | |
| return model, lemmatizer | |
| model, lemmatizer = get_models() | |
| stop_words = set(stopwords.words('english')) | |
| #load the dataframe with disorder embeddings | |
| # π Add the caching decorator | |
| def load_data(): | |
| df_icd = pd.read_csv('icd_embedded.csv') | |
| df_icd['numpy_array'] = df_icd['Embeddings'].apply(convert_string_to_numpy_array) | |
| icd_embeddings = np.array(df_icd["numpy_array"].tolist()) | |
| return df_icd, icd_embeddings | |
| df_icd, icd_embeddings = load_data() | |
| #create a list of disease names | |
| # π Add the caching decorator | |
| def create_disease_list(): | |
| disease_names = [] | |
| for name in df_icd["Disease"]: | |
| disease_names.append(name) | |
| return disease_names | |
| disease_names = create_disease_list() | |
| if 'descriptions' not in st.session_state: | |
| st.session_state.descriptions = [] | |
| def similarity_top(descr_emb, disorder_embs): | |
| # reshaping the character_embedding to match the shape of mental_disorder_embeddings | |
| descr_emb = descr_emb.reshape(1, -1) | |
| # calculating the cosine similarity | |
| similarity_scores = cosine_similarity(disorder_embs, descr_emb) | |
| scores_names = [] | |
| for score, name in zip(similarity_scores, disease_names): | |
| data = {"disease_name": name, "similarity_score": score} | |
| scores_names.append(data) | |
| scores_names = sorted(scores_names, key=lambda x: x['similarity_score'], reverse=True) | |
| results = [] | |
| for item in scores_names: | |
| disease_name = item['disease_name'] | |
| similarity_score = item['similarity_score'][0] | |
| results.append((disease_name, similarity_score)) | |
| return results[:5] | |
| def vis_results_2d(input_embed): | |
| # performing dimensionality reduction using PCA | |
| pca = PCA(n_components=2) | |
| disease_embeddings_2d = pca.fit_transform(icd_embeddings) | |
| # creating a DataFrame for disease embeddings plot | |
| disease_data_df = pd.DataFrame(disease_embeddings_2d, columns=['PC1', 'PC2']) | |
| disease_data_df['Type'] = 'Disease' | |
| disease_data_df['Name'] = disease_names | |
| input_embed_2d = input_embed.reshape(1, -1) | |
| input_embed_2d = pca.transform(input_embed_2d) | |
| # creating a DataFrame for character embedding plot | |
| pca_2d = pd.DataFrame(input_embed_2d, columns=['PC1', 'PC2']) | |
| pca_2d['Type'] = 'Character' | |
| pca_2d['Your character'] = 'Your character' | |
| # concatenating the two DataFrames | |
| combined_2d = pd.concat([disease_data_df, pca_2d], ignore_index=True) | |
| # creating an interactive 3D scatter plot | |
| fig = px.scatter(combined_2d, x='PC1', y='PC2', text='Name', color='Type', symbol='Type', width=800, height=800) | |
| fig.show() | |
| def vis_results_3d(input_embed): | |
| # performing dimensionality reduction using PCA | |
| pca = PCA(n_components=3) | |
| disease_embeddings_3d = pca.fit_transform(icd_embeddings) | |
| # creating a DataFrame for disease embeddings plot | |
| disease_data_df = pd.DataFrame(disease_embeddings_3d, columns=['PC1', 'PC2', 'PC3']) | |
| disease_data_df['Type'] = 'Disease' | |
| disease_data_df['Name'] = disease_names | |
| input_embed_2d = input_embed.reshape(1, -1) | |
| input_embed_3d = pca.transform(input_embed_2d) | |
| # creating a DataFrame for character embedding plot | |
| pca_3d = pd.DataFrame(input_embed_3d, columns=['PC1', 'PC2', 'PC3']) | |
| pca_3d['Type'] = 'Character' | |
| pca_3d['Your character'] = 'Your character' | |
| # concatenating the two DataFrames | |
| combined_3d = pd.concat([disease_data_df, pca_3d], ignore_index=True) | |
| # creating an interactive 3D scatter plot | |
| fig = px.scatter_3d(combined_3d, x='PC1', y='PC2', z='PC3', text='Name', color='Type', symbol='Type', width=800, height=800) | |
| fig.show() | |
| # Configure Streamlit page and state | |
| st.title("Detect your character's mental disorder! :books: :mag:") | |
| st.markdown( | |
| "This mini-app predicts top-5 most likely mental disorders based on your description. The more information you provide, the more informative the results will be." | |
| ) | |
| st.caption("Note that this app can't be used for diagnostic purposes.") | |
| input = st.text_input(label="Your description", placeholder="Insert a description of your character") | |
| if input: | |
| input_embed = model.encode(input) | |
| sim_score = similarity_top(input_embed, icd_embeddings) | |
| i = 1 | |
| nums = {1: 'one', 2: 'two', 3: 'three', 4:'four', 5:'five'} | |
| for dis, value in sim_score: | |
| st.write(f":green[*Prediction number*] :{i}: :") | |
| st.write(f"{dis} (similarity score:", value, ")") | |
| i+= 1 | |
| text_spinner_placeholder = st.empty() | |
| # with st.spinner("Please wait while your visualizations are being generated..."): | |
| # time.sleep(5) | |
| # vis_results_2d(input_embed) | |
| # vis_results_3d(input_embed) | |