import os
import gradio as gr
from cerebras.cloud.sdk import Cerebras
client = Cerebras(
api_key=os.environ.get("CEREBRAS_API_KEY"),
)
TTILE = """
🚀 Try the world's fastest inference by Cerebras ⚡
"""
NOTICE = """
Current only support Llama3.1 8B and Llama3.1 70B.
"""
def respond(
message,
history: list[tuple[str, str]],
model_id,
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
stream = client.chat.completions.create(
messages=messages,
model=model_id,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
for chunk in stream:
token = chunk.choices[0].delta.content or ""
response += token
yield response
chatbot = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(height=500),
additional_inputs=[
gr.Dropdown(
["llama3.1-8b", "llama3.1-70b"],
value="llama3.1-70b",
label="Models"
),
gr.Textbox(value="You are a friendly assistant.", label="System message"),
gr.Slider(minimum=1, maximum=8192, value=4096, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(TTILE)
gr.HTML(NOTICE)
chatbot.render()
if __name__ == "__main__":
demo.launch(debug=True, show_error=True)