import os import gradio as gr from cerebras.cloud.sdk import Cerebras client = Cerebras( api_key=os.environ.get("CEREBRAS_API_KEY"), ) TTILE = """

🚀 Try the world's fastest inference by Cerebras ⚡

""" NOTICE = """ Current only support Llama3.1 8B and Llama3.1 70B. """ def respond( message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" stream = client.chat.completions.create( messages=messages, model=model_id, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ) for chunk in stream: token = chunk.choices[0].delta.content or "" response += token yield response chatbot = gr.ChatInterface( respond, chatbot=gr.Chatbot(height=500), additional_inputs=[ gr.Dropdown( ["llama3.1-8b", "llama3.1-70b"], value="llama3.1-70b", label="Models" ), gr.Textbox(value="You are a friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=8192, value=4096, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.HTML(TTILE) gr.HTML(NOTICE) chatbot.render() if __name__ == "__main__": demo.launch(debug=True, show_error=True)