Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,38 +2,25 @@ import gradio as gr
|
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image, ImageDraw
|
4 |
|
5 |
-
# Load YOLO model
|
6 |
YOLO_MODEL_PATH = "best.pt"
|
7 |
-
model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
|
8 |
|
9 |
def merge_boxes_into_lines(boxes, y_threshold=10):
|
10 |
-
"""
|
11 |
-
Merge bounding boxes that are on the same row but not merge different row lines.
|
12 |
-
Args:
|
13 |
-
boxes: List of bounding boxes [x1, y1, x2, y2]
|
14 |
-
y_threshold: Max difference in y1 position to be considered the same row
|
15 |
-
Returns:
|
16 |
-
List of merged line bounding boxes
|
17 |
-
"""
|
18 |
if len(boxes) == 0:
|
19 |
return []
|
20 |
|
21 |
-
# Sort boxes by y1 (top position)
|
22 |
boxes = sorted(boxes, key=lambda b: b[1])
|
23 |
-
|
24 |
merged_lines = []
|
25 |
current_line = list(boxes[0])
|
26 |
|
27 |
for i in range(1, len(boxes)):
|
28 |
x1, y1, x2, y2 = boxes[i]
|
29 |
|
30 |
-
# Merge only if y position is very close (same row)
|
31 |
if abs(y1 - current_line[1]) < y_threshold:
|
32 |
-
current_line[0] = min(current_line[0], x1)
|
33 |
-
current_line[2] = max(current_line[2], x2)
|
34 |
-
current_line[3] = max(current_line[3], y2)
|
35 |
else:
|
36 |
-
# Store previous line and start a new one
|
37 |
merged_lines.append(current_line)
|
38 |
current_line = list(boxes[i])
|
39 |
|
@@ -41,25 +28,15 @@ def merge_boxes_into_lines(boxes, y_threshold=10):
|
|
41 |
return merged_lines
|
42 |
|
43 |
def detect_and_crop_lines(image):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
image: Input image (PIL format)
|
48 |
-
Returns:
|
49 |
-
Annotated image with bounding boxes, List of cropped images
|
50 |
-
"""
|
51 |
-
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
52 |
-
original_image = image.copy() # Keep a copy of the original image
|
53 |
-
|
54 |
-
# Run YOLO detection on the original image
|
55 |
results = model.predict(image, conf=0.3, iou=0.5, device="cpu")
|
56 |
detected_boxes = results[0].boxes.xyxy.tolist()
|
57 |
-
detected_boxes = [list(map(int, box)) for box in detected_boxes]
|
58 |
|
59 |
-
# Merge bounding boxes based on row position
|
60 |
merged_boxes = merge_boxes_into_lines(detected_boxes)
|
61 |
|
62 |
-
# Draw bounding boxes
|
63 |
draw = ImageDraw.Draw(original_image)
|
64 |
cropped_lines = []
|
65 |
|
@@ -67,13 +44,11 @@ def detect_and_crop_lines(image):
|
|
67 |
draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
|
68 |
draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
|
69 |
|
70 |
-
# Crop the detected text line
|
71 |
cropped_line = image.crop((x1, y1, x2, y2))
|
72 |
cropped_lines.append(cropped_line)
|
73 |
|
74 |
return original_image, cropped_lines
|
75 |
|
76 |
-
# Define Gradio interface
|
77 |
with gr.Blocks() as iface:
|
78 |
gr.Markdown("# Text Line Detection")
|
79 |
gr.Markdown("## Input your custom image for text line detection")
|
@@ -87,15 +62,22 @@ with gr.Blocks() as iface:
|
|
87 |
gr.Markdown("### Annotated Image with Detected Lines")
|
88 |
output_annotated = gr.Image(type="pil", label="Detected Text Lines")
|
89 |
|
90 |
-
gr.Markdown("### Cropped Text Lines (
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
image_input.upload(
|
95 |
-
|
96 |
inputs=image_input,
|
97 |
-
outputs=[output_annotated
|
98 |
)
|
99 |
|
100 |
-
# Launch Gradio interface
|
101 |
iface.launch()
|
|
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image, ImageDraw
|
4 |
|
|
|
5 |
YOLO_MODEL_PATH = "best.pt"
|
6 |
+
model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
|
7 |
|
8 |
def merge_boxes_into_lines(boxes, y_threshold=10):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
if len(boxes) == 0:
|
10 |
return []
|
11 |
|
|
|
12 |
boxes = sorted(boxes, key=lambda b: b[1])
|
|
|
13 |
merged_lines = []
|
14 |
current_line = list(boxes[0])
|
15 |
|
16 |
for i in range(1, len(boxes)):
|
17 |
x1, y1, x2, y2 = boxes[i]
|
18 |
|
|
|
19 |
if abs(y1 - current_line[1]) < y_threshold:
|
20 |
+
current_line[0] = min(current_line[0], x1)
|
21 |
+
current_line[2] = max(current_line[2], x2)
|
22 |
+
current_line[3] = max(current_line[3], y2)
|
23 |
else:
|
|
|
24 |
merged_lines.append(current_line)
|
25 |
current_line = list(boxes[i])
|
26 |
|
|
|
28 |
return merged_lines
|
29 |
|
30 |
def detect_and_crop_lines(image):
|
31 |
+
image = Image.fromarray(image)
|
32 |
+
original_image = image.copy()
|
33 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
results = model.predict(image, conf=0.3, iou=0.5, device="cpu")
|
35 |
detected_boxes = results[0].boxes.xyxy.tolist()
|
36 |
+
detected_boxes = [list(map(int, box)) for box in detected_boxes]
|
37 |
|
|
|
38 |
merged_boxes = merge_boxes_into_lines(detected_boxes)
|
39 |
|
|
|
40 |
draw = ImageDraw.Draw(original_image)
|
41 |
cropped_lines = []
|
42 |
|
|
|
44 |
draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
|
45 |
draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
|
46 |
|
|
|
47 |
cropped_line = image.crop((x1, y1, x2, y2))
|
48 |
cropped_lines.append(cropped_line)
|
49 |
|
50 |
return original_image, cropped_lines
|
51 |
|
|
|
52 |
with gr.Blocks() as iface:
|
53 |
gr.Markdown("# Text Line Detection")
|
54 |
gr.Markdown("## Input your custom image for text line detection")
|
|
|
62 |
gr.Markdown("### Annotated Image with Detected Lines")
|
63 |
output_annotated = gr.Image(type="pil", label="Detected Text Lines")
|
64 |
|
65 |
+
gr.Markdown("### Cropped Text Lines (Displayed Row by Row)")
|
66 |
+
|
67 |
+
cropped_output_rows = []
|
68 |
+
for i in range(20):
|
69 |
+
with gr.Row():
|
70 |
+
cropped_output_rows.append(gr.Image(type="pil", label=f"Line {i+1}"))
|
71 |
|
72 |
+
def process_and_display(image):
|
73 |
+
annotated_img, cropped_imgs = detect_and_crop_lines(image)
|
74 |
+
cropped_imgs += [None] * (20 - len(cropped_imgs))
|
75 |
+
return [annotated_img] + cropped_imgs[:20]
|
76 |
|
77 |
image_input.upload(
|
78 |
+
process_and_display,
|
79 |
inputs=image_input,
|
80 |
+
outputs=[output_annotated] + cropped_output_rows
|
81 |
)
|
82 |
|
|
|
83 |
iface.launch()
|