Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import pytesseract
|
5 |
+
|
6 |
+
# Set the correct Tesseract path for Hugging Face Spaces
|
7 |
+
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
|
8 |
+
|
9 |
+
YOLO_MODEL_PATH = "best.pt"
|
10 |
+
model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
|
11 |
+
|
12 |
+
def merge_boxes_into_lines(boxes, y_threshold=10):
|
13 |
+
if len(boxes) == 0:
|
14 |
+
return []
|
15 |
+
|
16 |
+
boxes = sorted(boxes, key=lambda b: b[1])
|
17 |
+
merged_lines = []
|
18 |
+
current_line = list(boxes[0])
|
19 |
+
|
20 |
+
for i in range(1, len(boxes)):
|
21 |
+
x1, y1, x2, y2 = boxes[i]
|
22 |
+
|
23 |
+
if abs(y1 - current_line[1]) < y_threshold:
|
24 |
+
current_line[0] = min(current_line[0], x1)
|
25 |
+
current_line[2] = max(current_line[2], x2)
|
26 |
+
current_line[3] = max(current_line[3], y2)
|
27 |
+
else:
|
28 |
+
merged_lines.append(current_line)
|
29 |
+
current_line = list(boxes[i])
|
30 |
+
|
31 |
+
merged_lines.append(current_line)
|
32 |
+
return merged_lines
|
33 |
+
|
34 |
+
def detect_and_ocr(image):
|
35 |
+
image = Image.fromarray(image)
|
36 |
+
original_image = image.copy()
|
37 |
+
|
38 |
+
results = model.predict(image, conf=0.3, iou=0.5, device="cpu")
|
39 |
+
detected_boxes = results[0].boxes.xyxy.tolist()
|
40 |
+
detected_boxes = [list(map(int, box)) for box in detected_boxes]
|
41 |
+
|
42 |
+
merged_boxes = merge_boxes_into_lines(detected_boxes)
|
43 |
+
|
44 |
+
draw = ImageDraw.Draw(original_image)
|
45 |
+
extracted_text_lines = []
|
46 |
+
|
47 |
+
for idx, (x1, y1, x2, y2) in enumerate(merged_boxes):
|
48 |
+
draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
|
49 |
+
draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
|
50 |
+
|
51 |
+
cropped_line = image.crop((x1, y1, x2, y2))
|
52 |
+
|
53 |
+
ocr_text = pytesseract.image_to_string(cropped_line, lang="eng").strip()
|
54 |
+
if ocr_text:
|
55 |
+
extracted_text_lines.append(ocr_text)
|
56 |
+
|
57 |
+
full_text = "\n".join(extracted_text_lines)
|
58 |
+
|
59 |
+
return original_image, full_text
|
60 |
+
|
61 |
+
with gr.Blocks() as iface:
|
62 |
+
gr.Markdown("# Text Line Detection with OCR")
|
63 |
+
gr.Markdown("## Upload an image to detect text lines and extract text")
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column(scale=1):
|
67 |
+
gr.Markdown("### Upload Image")
|
68 |
+
image_input = gr.Image(type="numpy", label="Upload an image")
|
69 |
+
|
70 |
+
with gr.Column(scale=1):
|
71 |
+
gr.Markdown("### Annotated Image with Bounding Boxes")
|
72 |
+
output_annotated = gr.Image(type="pil", label="Detected Text Lines")
|
73 |
+
|
74 |
+
gr.Markdown("### Extracted Text (OCR Result)")
|
75 |
+
output_text = gr.Textbox(label="Extracted Text", lines=10)
|
76 |
+
|
77 |
+
image_input.upload(
|
78 |
+
detect_and_ocr,
|
79 |
+
inputs=image_input,
|
80 |
+
outputs=[output_annotated, output_text]
|
81 |
+
)
|
82 |
+
|
83 |
+
iface.launch()
|