TestingYolo / app_V1_Yolo.py
Norakneath's picture
Rename app.py to app_V1_Yolo.py
fa2b0fb verified
raw
history blame
2.83 kB
import gradio as gr
from ultralytics import YOLO
from PIL import Image, ImageDraw
YOLO_MODEL_PATH = "best.pt"
model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
def merge_boxes_into_lines(boxes, y_threshold=10):
if len(boxes) == 0:
return []
boxes = sorted(boxes, key=lambda b: b[1])
merged_lines = []
current_line = list(boxes[0])
for i in range(1, len(boxes)):
x1, y1, x2, y2 = boxes[i]
if abs(y1 - current_line[1]) < y_threshold:
current_line[0] = min(current_line[0], x1)
current_line[2] = max(current_line[2], x2)
current_line[3] = max(current_line[3], y2)
else:
merged_lines.append(current_line)
current_line = list(boxes[i])
merged_lines.append(current_line)
return merged_lines
def detect_and_crop_lines(image):
image = Image.fromarray(image)
original_image = image.copy()
results = model.predict(image, conf=0.3, iou=0.5, device="cpu")
detected_boxes = results[0].boxes.xyxy.tolist()
detected_boxes = [list(map(int, box)) for box in detected_boxes]
merged_boxes = merge_boxes_into_lines(detected_boxes)
draw = ImageDraw.Draw(original_image)
cropped_lines = []
for idx, (x1, y1, x2, y2) in enumerate(merged_boxes):
draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
cropped_line = image.crop((x1, y1, x2, y2))
# Resize the cropped line to a smaller fixed width while maintaining aspect ratio
fixed_width = 200
aspect_ratio = cropped_line.height / cropped_line.width
new_height = int(fixed_width * aspect_ratio)
cropped_line = cropped_line.resize((fixed_width, new_height), Image.LANCZOS)
cropped_lines.append(cropped_line)
return original_image, cropped_lines
with gr.Blocks() as iface:
gr.Markdown("# Text Line Detection")
gr.Markdown("## Input your custom image for text line detection")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Upload Image")
image_input = gr.Image(type="numpy", label="Upload an image")
with gr.Column(scale=1):
gr.Markdown("### Annotated Image with Detected Lines")
output_annotated = gr.Image(type="pil", label="Detected Text Lines")
gr.Markdown("### Cropped Text Lines (Small Fixed-Size Previews)")
cropped_output = gr.Gallery(label="Detected Text Lines", columns=1, preview=True)
def process_and_display(image):
annotated_img, cropped_imgs = detect_and_crop_lines(image)
return annotated_img, cropped_imgs
image_input.upload(
process_and_display,
inputs=image_input,
outputs=[output_annotated, cropped_output]
)
iface.launch()