Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,6 @@ from langchain.indexes import VectorstoreIndexCreator
|
|
| 11 |
from langchain import OpenAI, VectorDBQA
|
| 12 |
|
| 13 |
import os
|
| 14 |
-
openai_api_key = os.environ["OPENAI_API_KEY"]
|
| 15 |
|
| 16 |
|
| 17 |
def pdf_to_text(pdf_file, query):
|
|
@@ -40,15 +39,13 @@ def pdf_to_text(pdf_file, query):
|
|
| 40 |
llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":512})
|
| 41 |
loaders = UnstructuredPDFLoader(pdf_file)
|
| 42 |
|
| 43 |
-
index =
|
| 44 |
-
embedding=HuggingFaceEmbeddings(),
|
| 45 |
-
text_splitter= CharacterTextSplitter(chunk_size=1000, chunk_overlap=0).from_loaders(loaders))
|
| 46 |
#inference
|
| 47 |
qa = VectorDBQA.from_chain_type(llm=llm, chain_type="stuff", vectorstore=vectorstore)
|
| 48 |
from langchain.chains import RetrievalQA
|
| 49 |
chain = RetrievalQA.from_chain_type(llm=llm,
|
| 50 |
chain_type="stuff",
|
| 51 |
-
retriever=index
|
| 52 |
input_key="question")
|
| 53 |
return chain.run(query)
|
| 54 |
|
|
|
|
| 11 |
from langchain import OpenAI, VectorDBQA
|
| 12 |
|
| 13 |
import os
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def pdf_to_text(pdf_file, query):
|
|
|
|
| 39 |
llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":512})
|
| 40 |
loaders = UnstructuredPDFLoader(pdf_file)
|
| 41 |
|
| 42 |
+
index = vectorstore.as_retriever()
|
|
|
|
|
|
|
| 43 |
#inference
|
| 44 |
qa = VectorDBQA.from_chain_type(llm=llm, chain_type="stuff", vectorstore=vectorstore)
|
| 45 |
from langchain.chains import RetrievalQA
|
| 46 |
chain = RetrievalQA.from_chain_type(llm=llm,
|
| 47 |
chain_type="stuff",
|
| 48 |
+
retriever=index,
|
| 49 |
input_key="question")
|
| 50 |
return chain.run(query)
|
| 51 |
|