import gradio as gr import numpy as np import random import time from optimum.intel import OVStableDiffusionXLPipeline import torch from diffusers import EulerDiscreteScheduler from io import BytesIO from PIL import Image import base64 model_id = "None1145/noobai-XL-Vpred-0.65s-openvino" prev_height = 1216 prev_width = 832 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def reload_model(new_model_id): global pipe, model_id, prev_height, prev_width model_id = new_model_id try: print(f"{model_id}...") pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False) if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino": scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True} pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args) pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1) pipe.compile() print(f"{model_id}!!!") return f"Model successfully loaded: {model_id}" except Exception as e: return f"Failed to load model: {str(e)}" reload_model(model_id) def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): global prev_width, prev_height, pipe if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if prev_width != width or prev_height != height: pipe.reshape(batch_size=1, height=height, width=width, num_images_per_prompt=1) pipe.compile() prev_width = width prev_height = height image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] # # Save image as Base64 # buffered = BytesIO() # image.save(buffered, format="PNG") # base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8") # return image, seed, f"data:image/png;base64,{base64_image}" return image, seed examples = ["murasame \(senren\), senren banka",] with gr.Blocks() as img: gr.Markdown("# OpenVINO Text to Image") with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=60, step=1, value=28, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) # base64_view = gr.HTML(label="Base64 Image Preview", interactive=True) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=832, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1216, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) gr.Examples(examples=examples, inputs=[prompt]) gr.Markdown("### Model Reload") with gr.Row(): new_model_id = gr.Text(label="New Model ID", placeholder="Enter model ID", value=model_id) reload_button = gr.Button("Reload Model", variant="primary") reload_status = gr.Text(label="Status", interactive=False) reload_button.click( fn=reload_model, inputs=new_model_id, outputs=reload_status, ) run_button.click( fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], # outputs=[result, seed, base64_view], outputs=[result, seed], ) # # JavaScript logic to dynamically update HTML with Base64 # js_script = """ # # """ # gr.HTML(js_script) if __name__ == "__main__": img.queue(max_size=10, concurrency_count=2).launch()