None1145 commited on
Commit
376d672
·
verified ·
1 Parent(s): 6a1f8fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -4,6 +4,7 @@ import random
4
  from optimum.intel import OVStableDiffusionXLPipeline
5
  import torch
6
  from diffusers import EulerDiscreteScheduler
 
7
 
8
  model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
9
 
@@ -19,9 +20,12 @@ def reload_model(new_model_id):
19
  try:
20
  print(f"{model_id}...")
21
  pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False)
22
- if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino" or "Vpred" in model_id or "vpred" in model_id or "v-pred" in model_id:
23
  scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}
24
- pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args)
 
 
 
25
  # pipe.to("gpu")
26
  pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1)
27
  pipe.compile()
@@ -82,6 +86,14 @@ with gr.Blocks() as img:
82
  container=False,
83
  )
84
 
 
 
 
 
 
 
 
 
85
  run_button = gr.Button("Run", scale=0, variant="primary")
86
 
87
  result = gr.Image(label="Result", show_label=False)
@@ -130,14 +142,6 @@ with gr.Blocks() as img:
130
  value=5.0,
131
  )
132
 
133
- num_inference_steps = gr.Slider(
134
- label="Number of inference steps",
135
- minimum=1,
136
- maximum=60,
137
- step=1,
138
- value=28,
139
- )
140
-
141
  gr.Examples(examples=examples, inputs=[prompt])
142
 
143
  gr.Markdown("### Model Reload")
 
4
  from optimum.intel import OVStableDiffusionXLPipeline
5
  import torch
6
  from diffusers import EulerDiscreteScheduler
7
+ from diffusers import LCMScheduler
8
 
9
  model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
10
 
 
20
  try:
21
  print(f"{model_id}...")
22
  pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False)
23
+ if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino":
24
  scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}
25
+ # pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args)
26
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
27
+ pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
28
+ pipe.fuse_lora()
29
  # pipe.to("gpu")
30
  pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1)
31
  pipe.compile()
 
86
  container=False,
87
  )
88
 
89
+ num_inference_steps = gr.Slider(
90
+ label="Number of inference steps",
91
+ minimum=1,
92
+ maximum=60,
93
+ step=1,
94
+ value=5,
95
+ )
96
+
97
  run_button = gr.Button("Run", scale=0, variant="primary")
98
 
99
  result = gr.Image(label="Result", show_label=False)
 
142
  value=5.0,
143
  )
144
 
 
 
 
 
 
 
 
 
145
  gr.Examples(examples=examples, inputs=[prompt])
146
 
147
  gr.Markdown("### Model Reload")