import cv2 import numpy as np import gradio as gr # Farklı filtre fonksiyonları def apply_gaussian_blur(frame): return cv2.GaussianBlur(frame, (15, 15), 0) def apply_sharpening_filter(frame): kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) return cv2.filter2D(frame, -1, kernel) def apply_edge_detection(frame): return cv2.Canny(frame, 100, 200) def apply_invert_filter(frame): return cv2.bitwise_not(frame) def adjust_brightness_contrast(frame, alpha=1.0, beta=50): return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta) def apply_grayscale_filter(frame): return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) def apply_sepia_filter(frame): sepia_filter = np.array([[0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189]]) return cv2.transform(frame, sepia_filter) def apply_fall_filter(frame): fall_filter = np.array([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]) return cv2.transform(frame, fall_filter) # Filtre uygulama fonksiyonu def apply_filter(filter_type, input_image=None): if input_image is not None: frame = input_image else: cap = cv2.VideoCapture(0) ret, frame = cap.read() cap.release() if not ret: return "Web kameradan görüntü alınamadı" if filter_type == "Gaussian Blur": return apply_gaussian_blur(frame) elif filter_type == "Sharpen": return apply_sharpening_filter(frame) elif filter_type == "Edge Detection": return apply_edge_detection(frame) elif filter_type == "Invert": return apply_invert_filter(frame) elif filter_type == "Brightness": return adjust_brightness_contrast(frame, alpha=1.0, beta=50) elif filter_type == "Grayscale": return apply_grayscale_filter(frame) elif filter_type == "Sepia": return apply_sepia_filter(frame) elif filter_type == "Sonbahar": return apply_fall_filter(frame) # Gradio arayüzü with gr.Blocks() as demo: gr.Markdown("# Web Kameradan Canlı Filtreleme") # Filtre seçenekleri filter_type = gr.Dropdown( label="Filtre Seçin", choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness", "Grayscale", "Sepia", "Sonbahar"], value="Gaussian Blur" ) # Görüntü yükleme alanı input_image = gr.Image(label="Resim Yükle", type="numpy") # Çıktı için görüntü output_image = gr.Image(label="Filtre Uygulandı") # Filtre uygula butonu apply_button = gr.Button("Filtreyi Uygula") # Butona tıklanınca filtre uygulama fonksiyonu apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image) # Gradio arayüzünü başlat demo.launch()