import gradio as gr from PIL import Image, ImageDraw, ImageFont import scipy.io.wavfile as wavfile from transformers import pipeline narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") def generate_audio(text): # Generate the narrated text narrated_text = narrator(text) # Save the audio to a WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) return "output.wav" def read_objects(detection_objects): object_counts = {} for detection in detection_objects: label = detection['label'] object_counts[label] = object_counts.get(label, 0) + 1 response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): response += f" {object_counts[label]} {label}" + ("s" if object_counts[label] > 1 else "") if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response def draw_bounding_boxes(image, detections, font_path=None, font_size=20): draw_image = image.copy() draw = ImageDraw.Draw(draw_image) if font_path: font = ImageFont.truetype(font_path, font_size) else: font = ImageFont.load_default() for detection in detections: box = detection['box'] xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax'] draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" if font_path: text_size = draw.textbbox((xmin, ymin), text, font=font) else: text_size = draw.textbbox((xmin, ymin), text) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image def detect_object(image): raw_image = image output = object_detector(raw_image) processed_image = draw_bounding_boxes(raw_image, output) natural_text = read_objects(output) processed_audio = generate_audio(natural_text) return processed_image, processed_audio examples = [ ["dogs.jpg"] ] demo = gr.Interface( fn=detect_object, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[ gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio") ], title="Audio Described Object Detector", description="This application highlights objects in the provided image and generates an audio description.", examples=examples ) demo.launch()