Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -42,24 +42,39 @@ model_efn = tf.keras.models.load_model("efficientNet_binary")
|
|
42 |
# define the labels for the binary classification model
|
43 |
labels_efn = {0: 'Healthy', 1: 'Patients'}
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def classify_cnn(inp):
|
46 |
inp = inp.reshape((-1, 224, 224, 3))
|
47 |
inp = tf.keras.applications.densenet.preprocess_input(inp)
|
48 |
prediction = model_cnn.predict(inp)
|
49 |
-
|
50 |
-
return
|
51 |
|
52 |
def classify_efn(inp):
|
53 |
inp = inp.reshape((-1, 224, 224, 3))
|
54 |
inp = tf.keras.applications.efficientnet.preprocess_input(inp)
|
55 |
prediction = model_efn.predict(inp)
|
56 |
-
|
57 |
-
return
|
58 |
|
59 |
|
60 |
binary_interface_cnn = gr.Interface(fn=classify_cnn,
|
61 |
inputs=gr.Image(shape=(224, 224)),
|
62 |
-
outputs=gr.Label(num_top_classes=2),
|
|
|
63 |
title="Binary Image Classification",
|
64 |
description="Classify an image as healthy or patient using custom CNN.",
|
65 |
examples=[['3310277.png'],['371129.png']]
|
@@ -68,13 +83,17 @@ binary_interface_cnn = gr.Interface(fn=classify_cnn,
|
|
68 |
|
69 |
binary_interface_efn = gr.Interface(fn=classify_efn,
|
70 |
inputs=gr.Image(shape=(224, 224)),
|
71 |
-
outputs=gr.Label(num_top_classes=2),
|
|
|
72 |
title="Binary Image Classification",
|
73 |
description="Classify an image as healthy or patient using EfficientNet.",
|
74 |
examples=[['3310277.png'],['371129.png']]
|
75 |
)
|
76 |
|
77 |
|
|
|
|
|
|
|
78 |
demo = gr.TabbedInterface([binary_interface_cnn, binary_interface_efn], ["Custom CNN", "CNNs"])
|
79 |
|
80 |
demo.launch()
|
|
|
42 |
# define the labels for the binary classification model
|
43 |
labels_efn = {0: 'Healthy', 1: 'Patients'}
|
44 |
|
45 |
+
#def classify_cnn(inp):
|
46 |
+
#inp = inp.reshape((-1, 224, 224, 3))
|
47 |
+
#inp = tf.keras.applications.densenet.preprocess_input(inp)
|
48 |
+
#prediction = model_cnn.predict(inp)
|
49 |
+
#confidences = {labels_cnn[i]: float(prediction[0][i]) for i in range(2)}
|
50 |
+
#return confidences
|
51 |
+
|
52 |
+
#def classify_efn(inp):
|
53 |
+
#inp = inp.reshape((-1, 224, 224, 3))
|
54 |
+
#inp = tf.keras.applications.efficientnet.preprocess_input(inp)
|
55 |
+
#prediction = model_efn.predict(inp)
|
56 |
+
#confidences = {labels_efn[i]: float(prediction[0][i]) for i in range(2)}
|
57 |
+
#return confidences
|
58 |
+
|
59 |
def classify_cnn(inp):
|
60 |
inp = inp.reshape((-1, 224, 224, 3))
|
61 |
inp = tf.keras.applications.densenet.preprocess_input(inp)
|
62 |
prediction = model_cnn.predict(inp)
|
63 |
+
class_index = np.argmax(prediction, axis=-1)[0]
|
64 |
+
return labels_cnn[class_index]
|
65 |
|
66 |
def classify_efn(inp):
|
67 |
inp = inp.reshape((-1, 224, 224, 3))
|
68 |
inp = tf.keras.applications.efficientnet.preprocess_input(inp)
|
69 |
prediction = model_efn.predict(inp)
|
70 |
+
class_index = np.argmax(prediction, axis=-1)[0]
|
71 |
+
return labels_efn[class_index]
|
72 |
|
73 |
|
74 |
binary_interface_cnn = gr.Interface(fn=classify_cnn,
|
75 |
inputs=gr.Image(shape=(224, 224)),
|
76 |
+
#outputs=gr.Label(num_top_classes=2),
|
77 |
+
outputs=gr.outputs.Textbox(),
|
78 |
title="Binary Image Classification",
|
79 |
description="Classify an image as healthy or patient using custom CNN.",
|
80 |
examples=[['3310277.png'],['371129.png']]
|
|
|
83 |
|
84 |
binary_interface_efn = gr.Interface(fn=classify_efn,
|
85 |
inputs=gr.Image(shape=(224, 224)),
|
86 |
+
#outputs=gr.Label(num_top_classes=2),
|
87 |
+
outputs=gr.outputs.Textbox(),
|
88 |
title="Binary Image Classification",
|
89 |
description="Classify an image as healthy or patient using EfficientNet.",
|
90 |
examples=[['3310277.png'],['371129.png']]
|
91 |
)
|
92 |
|
93 |
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
demo = gr.TabbedInterface([binary_interface_cnn, binary_interface_efn], ["Custom CNN", "CNNs"])
|
98 |
|
99 |
demo.launch()
|