import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification model_name = "NimaKL/FireWatch_tiny_75k" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def predict(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits label_id = logits.argmax(axis=1).item() return "Danger of fire hazard!" if label_id == 1 else "It is unlikely that a fire will start in this area." # Define a custom CSS style custom_style = """ body { background-color: #F262626; } """ # Define a function to generate HTML for embedding the Google Sheets document def get_sheet_html(): return f'' io = gr.Interface( fn=predict, inputs="text", outputs="text", title="FireWatch", description="

Predict whether a data row describes a fire hazard or not.

\

Here is a Google Sheets document containing sample data (You can use for testing). It is a heavy document so it might take a while to load.

", output_description="Prediction", examples=[['-26.76123, 147.15512, 393.02, 203.63'], ['-26.7598, 147.14514, 361.54, 79.4'], ['-25.70059, 149.48932, 313.9, 5.15'], ['-24.4318, 151.83102, 307.98, 8.79'], ['-23.21878, 148.91298, 314.08, 7.4'], ['7.87518, 19.9241, 316.32, 39.63'], ['-20.10942, 148.14326, 314.39, 8.8'], ['7.87772, 19.9048, 304.14, 13.43'], ['-20.79866, 124.46834, 366.74, 89.06']], theme="Streamlit", css=custom_style ) io.launch()