Spaces:
Runtime error
Runtime error
Upload app-gradle.py
Browse files- app-gradle.py +28 -0
app-gradle.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
model_name = "NimaKL/FireWatch_tiny_75k"
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
7 |
+
|
8 |
+
def predict(text):
|
9 |
+
inputs = tokenizer(text, return_tensors="pt")
|
10 |
+
outputs = model(**inputs)
|
11 |
+
logits = outputs.logits
|
12 |
+
label_id = logits.argmax(axis=1).item()
|
13 |
+
return "Danger of fire hazard!" if label_id == 1 else "It is unlikely that a fire will start in this area."
|
14 |
+
|
15 |
+
io = gr.Interface(
|
16 |
+
fn=predict,
|
17 |
+
inputs="text",
|
18 |
+
outputs="text",
|
19 |
+
title="FireWatch",
|
20 |
+
description="Predict whether a data row describes a fire hazard or not.",
|
21 |
+
output_description="Prediction",
|
22 |
+
examples=[['-26.76123, 147.15512, 393.02, 203.63'], ['-26.7598, 147.14514, 361.54, 79.4'], ['-25.70059, 149.48932, 313.9, 5.15'], ['-24.4318, 151.83102, 307.98, 8.79'], ['-23.21878, 148.91298, 314.08, 7.4'], ['7.87518, 19.9241, 316.32, 39.63'], ['-20.10942, 148.14326, 314.39, 8.8'], ['7.87772, 19.9048, 304.14, 13.43'], ['-20.79866, 124.46834, 366.74, 89.06']]
|
23 |
+
,
|
24 |
+
output_component_names=["Prediction"],
|
25 |
+
theme="Streamlit"
|
26 |
+
)
|
27 |
+
|
28 |
+
io.launch()
|