NimaKL commited on
Commit
53b2550
Β·
1 Parent(s): 33c8b04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -11
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import gradio as gr
2
- from IPython.display import IFrame
3
  from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
4
 
5
  model_name = "NimaKL/FireWatch_tiny_75k"
@@ -20,25 +19,21 @@ custom_style = """
20
  }
21
  """
22
 
23
- # Define the function to display the Google Sheets document
24
- def show_sheet():
25
- return IFrame("https://docs.google.com/spreadsheets/d/1b2aAZ8ue5NI7hZ-MiNc8y4dFthbrRiXlsaEeYSHgNCM/edit?usp=sharing", width=800, height=600)
26
 
27
  io = gr.Interface(
28
  fn=predict,
29
  inputs="text",
30
  outputs="text",
31
  title="FireWatch",
32
- description="Predict whether a data row describes a fire hazard or not.",
 
33
  output_description="Prediction",
34
  examples=[['-26.76123, 147.15512, 393.02, 203.63'], ['-26.7598, 147.14514, 361.54, 79.4'], ['-25.70059, 149.48932, 313.9, 5.15'], ['-24.4318, 151.83102, 307.98, 8.79'], ['-23.21878, 148.91298, 314.08, 7.4'], ['7.87518, 19.9241, 316.32, 39.63'], ['-20.10942, 148.14326, 314.39, 8.8'], ['7.87772, 19.9048, 304.14, 13.43'], ['-20.79866, 124.46834, 366.74, 89.06']],
35
- output_component_names=["Prediction"],
36
  theme="Streamlit",
37
- css=custom_style,
38
- article="<h2>FireWatch App</h2><p>This app predicts whether a data row describes a fire hazard or not. The prediction is based on a machine learning model that has been trained on a dataset of data rows.</p><h2>Data Rows Sheet</h2>"
39
  )
40
 
41
- # Add the IFrame component to the app
42
- io.add_component("Sample Data Sheet", gr.outputs.HTML, show_sheet)
43
-
44
  io.launch()
 
1
  import gradio as gr
 
2
  from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
3
 
4
  model_name = "NimaKL/FireWatch_tiny_75k"
 
19
  }
20
  """
21
 
22
+ # Define a function to generate HTML for embedding the Google Sheets document
23
+ def get_sheet_html():
24
+ return f'<iframe src="https://docs.google.com/spreadsheets/d/1b2aAZ8ue5NI7hZ-MiNc8y4dFthbrRiXlsaEeYSHgNCM/preview" width="640" height="480"></iframe>'
25
 
26
  io = gr.Interface(
27
  fn=predict,
28
  inputs="text",
29
  outputs="text",
30
  title="FireWatch",
31
+ description="Predict whether a data row describes a fire hazard or not. \
32
+ <br><br>Here is a <a href='https://docs.google.com/spreadsheets/d/1b2aAZ8ue5NI7hZ-MiNc8y4dFthbrRiXlsaEeYSHgNCM/preview'>Google Sheets document</a> containing sample data.",
33
  output_description="Prediction",
34
  examples=[['-26.76123, 147.15512, 393.02, 203.63'], ['-26.7598, 147.14514, 361.54, 79.4'], ['-25.70059, 149.48932, 313.9, 5.15'], ['-24.4318, 151.83102, 307.98, 8.79'], ['-23.21878, 148.91298, 314.08, 7.4'], ['7.87518, 19.9241, 316.32, 39.63'], ['-20.10942, 148.14326, 314.39, 8.8'], ['7.87772, 19.9048, 304.14, 13.43'], ['-20.79866, 124.46834, 366.74, 89.06']],
 
35
  theme="Streamlit",
36
+ css=custom_style
 
37
  )
38
 
 
 
 
39
  io.launch()