import streamlit as st import torch import numpy as np from transformers import AutoTokenizer from transformers import BertForSequenceClassification st.set_page_config(layout='wide', initial_sidebar_state='expanded') col1, col2= st.columns(2) with col1: st.title("FireWatch") st.markdown("PREDICT WHETHER HEAT SIGNATURES AROUND THE GLOBE ARE LIKELY TO BE FIRES!") st.markdown("Traing Code at:") st.markdown("https://colab.research.google.com/drive/1-IfOMJ-X8MKzwm3UjbJbK6RmhT7tk_ye?usp=sharing") st.markdown("Try the Model Yourself at:") st.markdown("https://colab.research.google.com/drive/1GmweeQrkzs0OXQ_KNZsWd1PQVRLCWDKi?usp=sharing") st.markdown("## Sample Table") table_html = """
Category | Latitude, Longitude, Brightness, FRP |
---|---|
Likely | -26.76123, 147.15512, 393.02, 203.63 |
Likely | -26.7598, 147.14514, 361.54, 79.4 |
Unlikely | -25.70059, 149.48932, 313.9, 5.15 |
Unlikely | -24.4318, 151.83102, 307.98, 8.79 |
Unlikely | -23.21878, 148.91298, 314.08, 7.4 |
Likely | 7.87518, 19.9241, 316.32, 39.63 |
Unlikely | -20.10942, 148.14326, 314.39, 8.8 |
Unlikely | 7.87772, 19.9048, 304.14, 13.43 |
Likely | -20.79866, 124.46834, 366.74, 89.06 |